

CANCELLATION NOTICE OF THE REGULAR MEETING AND CALL AND NOTICE OF A SPECIAL MEETING OF THE LEGAL, GOVERNMENT AND ENVIRONMENTAL AFFAIRS COMMITTEE OF THE BURBANK-GLENDALE-PASADENA AIRPORT AUTHORITY

The Airport Authority administrative offices will be closed on Monday, January 18, 2021, in observance of Martin Luther King, Jr., Day. Therefore, the regular meeting of the Legal, Government and Environmental Affairs Committee scheduled for Monday, January 18, 2021, at 9:30 a.m., or immediately following the Commission meeting, in the Burbank Room of Hollywood Burbank Airport, has been cancelled.

NOTICE is hereby given that a special meeting of the Legal, Government and Environmental Affairs Committee will be held Tuesday, January 19, 2021, at 9:30 a.m., or immediately following the Commission meeting, in the Burbank Room of Hollywood Burbank Airport, 2627 N. Hollywood Way, Burbank, California 91505.

Pursuant to Governor Newsom's Executive Order N-29-20, members of the Commission or staff may participate in this meeting via teleconference. In the interest of maintaining appropriate social distancing, members of the public may observe and participate in the meeting telephonically through the following number:

Dial In: (701) 802-5334

Access Code 2451017

Terri Williams, Board Secretary Burbank-Glendale-Pasadena Airport Authority

2627 N. Hollywood Way • Burbank, California 91505 • (818) 840-8840 • Fax: (818) 848-1173

SPECIAL MEETING OF THE LEGAL, GOVERNMENT AND ENVIRONMENTAL AFFAIRS COMMITTEE Burbank Room Tuesday, January 19, 2021 9:30 a.m., or Immediately Following the Conclusion of the Commission Meeting

As a result of the convening of this meeting of the Legal, Government and Environmental Affairs Committee, each Committee member in attendance is entitled to receive and shall be provided \$200.

The public comment period is the opportunity for members of the public to address the Committee on agenda items and on airport-related non-agenda matters that are within the Committee's subject matter jurisdiction. At the discretion of the presiding officer, public comment on an agenda item may be presented when that item is reached.

Members of the public are requested to observe the following decorum when attending or participating in meetings of the Committee:

- Turn off cellular telephones and pagers.
- Refrain from disorderly or boisterous conduct, including loud, threatening, profane, or abusive language, clapping, whistling, stamping, or other acts that disrupt or otherwise render unfeasible the orderly conduct of the meeting.
- If you desire to address the Committee during the public comment period, fill out a speaker request card and present it to the Board Secretary.
- Confine remarks to agenda items or to airport-related non-agenda matters that are within the Committee's subject matter jurisdiction.
- Limit comments to five minutes or to such other period of time as may be specified by the presiding officer.

The following activities are prohibited:

- Allocation of speaker time to another person.
- Video presentations requiring use of Authority equipment.

• • •

Any disclosable public records related to an open session item on a regular meeting agenda and distributed by the Authority to the Committee less than 72 hours prior to that meeting are available for public inspection at Hollywood Burbank Airport (2627 N. Hollywood Way, Burbank) in the administrative office during normal business hours.

In accordance with the Americans with Disabilities Act of 1990, if you require a disability-related modification or accommodation to attend or participate in this meeting, including auxiliary aids or services, please call the Board Secretary at (818) 840-8840 at least 48 hours prior to the meeting.

<u>A G E N D A</u>

Tuesday, January 19, 2021

1.	Ар	Approval of Agenda			
2.	Pu	Public Comment			
3.	Ар	Approval of Minutes			
	a.	November 16, 2020	[See page 1]		
4.	Iter	ms for Discussion			
	a.	State of California Legislative Report and 2021 Legislative Calendar (Arnold & Associates)	[No staff report]		
		A State Legislative Report and Legislative Calendar is attached. Staff along with representatives from Arnold and Associates will update the Committee on current State legislative activities.			
5.	Iter	ns for Information			
	a.	Update – PFAS Phase 2 Report to LARWQCB	[No staff report]		
	Staff will update the Committee on the report findings of the Phase 2 investigation.				
	b.	EPA Past Cost Recovery Claim	[No staff report]		
		Staff will update the Committee on the status of the claim.			
	C.	Committee Pending Items	[See page 3]		
6.	6. Closed Session				
	a.	Conference with Real Property Negotiators (California Government Code Section 54956.8)			
		Property: Bob Hope Airport Leaseholds Authority Negotiator: Executive Director Negotiating Party: Delux Public Charter LLC Under Negotiation: Price and Terms of Payment			
7.	Ad	journment			

MINUTES OF THE REGULAR MEETING OF THE LEGAL, GOVERNMENT AND ENVIRONMENTAL AFFAIRS COMMITTEE BURBANK-GLENDALE-PASADENA AIRPORT AUTHORITY

MONDAY, NOVEMBER 16, 2020

A regular meeting of the Legal, Government and Environmental Affairs Committee was called to order on this date in the Burbank Room, 2627 N. Hollywood Way, Burbank, California, at 10:30 a.m., by Chairman Wiggins.

AB 23 Disclosure: The Assistant Board Secretary announced that, as a result of the convening of this meeting of the Legal, Government and Environmental Affairs Committee, each Committee member in attendance is entitled to receive and shall be provided \$200.

ROLL CALL Present:	Commissioners Wiggins, Agajanian (via teleconference) and Madison (via teleconference)	
Absent:	None	
Also Present:	Staff: Frank Miller, Executive Director; Patrick Lammerding, Deputy Executive Director, Planning and Development; Pamela Marcello, Senior Director, Government and Public Affairs	
	Airport Authority Counsel: Terence R. Boga of Richards, Watson & Gershon and Tom Ryan of McDermott, Will & Emery	
1. Approval of Agenda	The agenda was approved as presented.	
2. Public Comment	There were no public speakers.	
3. Approval of Minutes		
a. October 19, 2020	Commissioner Agajanian (via teleconference) moved approval of the minutes of the October 19, 2020 meeting, seconded by Commissioner Madison (via teleconference). There being no objection, a voice vote was taken to accommodate those participating via teleconference. The motion was approved (3-0).	
4. Items for Discussion		
a. Citizen's Advisory Committee	Based on the input received from the Committee at the September 21 st meeting, Staff and legal counsel presented to the Committee a draft resolution for recommendation to the Commission for the establishment of a 12-member Citizen's Advisory Committee ("CAC") comprised of representatives from Burbank, Glendale, Pasadena, and Los	

		Angeles. The proposed CAC would be tasked with gathering public input on airplane noise issues.
	Motion	Commissioner Madison (via teleconference) moved the Committee recommendation, seconded by Commissioner Agajanian (via teleconference).
	Motion Approved	There being no objection, a voice vote was taken to accommodate those participating via teleconference. The motion was approved (3-0).
5. lt	ems for Information	
а	. Committee Pending Items	Staff informed the Committee of future pending items that will come to the Committee for review.
6. A	djournment	There being no further business, the meeting adjourned at 10:45 a.m.

Arnold and Associates, Inc.

Legislative Advocates and Consultants

Phone: (916) 446-26460Fax: (916) 446-6095 01127 11th Street, Suite 820, Sacramento, CA 95814

Legislative Update for January 19th meeting:

- I. Legislature Returned to Sacramento for the 2020 -2021 Legislative Session
 - a. Legislature convened on December 7, 2020
 - b. Democratic super majority in the State Senate and Assembly.
 - c. Bill introduction deadline is February 19, 2021
 - d. The date of the Governor's State of the State Address has not been announced yet.
- II. Governor's Prosed Budget \$227.2 billion fiscal blueprint with a \$15 Billion surplus
 - a. Highlights from the Governor's Budget proposal
 - i. Education \$89.2 Billion
 - The upward revision of General Fund revenues has resulted in significant increases in the Proposition 98 Guarantee. Proposition 98 funding for K-12 schools and community colleges for 2021-22 is \$85.8 billion. This represents an increased investment of \$14.9 billion in schools and community colleges above the level funded in the 2020 Budget Act, and the highest level of funding for K-14 schools ever. When combined with a one-time supplemental allocation of \$2.3 billion and the benefit of CalSTRS and CalPERS rates (\$1.1 billion), the state funding available to schools increases to \$89.2 billion.
 - ii. \$4.4 billion for emergency response for COVID-19
 - 1. \$2 billion for testing
 - 2. \$473 million for contact tracing
 - 3. \$372 million for vaccines
 - iii. New \$2.4 billion "Golden State Stimulus" giving \$600 stimulus payments to recipients of the state's Earned Income Tax Credit in 2019. Approximately 4 million Californians will be eligible including undocumented workers.

- iv. Economic Recovery Package
 - 1. \$247 million for small business tax credits, grants, micro-grants, loans
 - 2. \$430 million for CalCompetes credits and grants
 - 3. More aid for Job creators such as Main Street Hiring Tax Credit, Loan Guarantees, IBank, Sales Tax Exclusions, and CA Dream Fund
 - 4. \$1.5 billion for ZEV infrastructure: charging stations and incentives to improve access to ZEV
 - 5. \$500 million for infill infrastructure grants to local governments for projects leading to long-term housing development
- v. "Immediate Action Package" The Governor has requested immediate budget approved by the Legislature for the following:
 - 1. \$2 billion to reopen K-12 Schools
 - 2. \$575 million small business grants
 - 3. \$71 million fee waivers for small business (to benefit service industry, i.e., restaurants/hair and nail salons/gyms)
- vi. TRANSPORTION
 - 1. California State Department of Transportation (Caltrans)
 - The Budget includes total funding of \$20.6 billion for all departments and programs administered within the California State Transportation Agency.
 - 2. High Speed Rail
 - The High-Speed Rail Authority continues to construct the Central Valley segment to provide electrified High-Speed Rail from Merced to Bakersfield with Proposition 1A bonds, federal funds, and 25 percent of the continuously appropriated Cap and Trade auction proceeds.
- III. Key Bills tracking 11 bills so far
 - a. Hazardous Waste several bills have been introduced relating to hazardous waste facilities and clean-up.
 - b. Greenhouse Gas Reduction funding for High Speed Rail bill to transfer funds to K-12 education
 - c. Sea level rise several bills relating to sea level rise. These bills may be of more importance to airports located along the coastline.
 - d. Employment tracking bills relating to contact tracing and rights and benefits for telecommuting employees.

Legislative Advocates and Consultants

2021 Legislative Calendar

Jan. 1	Statutes take effect.
Jan. 6	Legislature reconvenes.
Jan. 10	Budget must be submitted by Governor.
Jan. 22	Last day to submit bill requests to the Office of Legislature
	Counsel.
Feb. 19	Last day for bills to be introduced.
March 25	Spring Recess begins upon adjournment of session.
Apr. 5	Legislature reconvenes from Spring Recess.
Apr. 30	Last day for policy committees to hear and report to fiscal
	<u>committees fiscal bills.</u>
May 7	Last day for policy committees to hear and report to the floor
	nonfiscal bills introduced in their house.
May 14	Last day for policy committees to meet prior to June 1
May 21	Last day for fiscal committees to hear and report bills to the
	<u>floor bills introduced in their house. Last day for fiscal</u>
	<u>committees to meet prior to June 7</u>
June 1-4	Floor session only. No committees, other than conference or Rules
	committee, may meet for any purpose
June 4	Last day for bills to be passed out of the house of origin.
June 7	Committee meetings may resume.
June 15	Budget bill must be passed by midnight.
July 14	Last day for policy committee to meet and report bills
July 16	Summer Recess begins upon adjournment, provided Budget Bill
	has been passed.
Aug. 16	Legislature reconvenes from Summer Recess.
Aug. 27	Last day for fiscal committees to meet and report bills to the
	<u>floor</u>
Aug 30 – Sept 10	Floor Session Only. No committee, other than conference and
	Rules committees, may meet for any purpose.
Sept. 3	Last day to amend bills on the Floor.
Sept. 10	Last day for each house to pass bills.
Oct. 10	Last day for Governor to sign or veto bills passed by
	Legislature on or before Sept. 10 th

Phone: (916) 446-2646 ◊ Fax: (916) 446-6095 1127 11th Street, Suite 820, Sacramento, CA 95814

Prepared for

Burbank-Glendale-Pasadena Airport Authority 2627 Hollywood Way Burbank, California 91505

PER- AND POLYFLUOROALKYL SUBSTANCES (PFAS) GROUNDWATER AND SUPPLEMENTAL SOIL INVESTIGATION REPORT

Hollywood Burbank Airport

Prepared by

Geosyntec[▷] consultants

engineers | scientists | innovators

65 N. Raymond Avenue Pasadena, California 91103

Project Number: WR2693

11 December 2020

Per- and Polyfluoroalkyl Substances (PFAS) Groundwater and Supplemental Soil Investigation Report Hollywood Burbank Airport Burbank, California

Prepared by

Geosyntec Consultants, Inc. 65 N. Raymond Avenue, Suite 200 Pasadena, California 91103

Mital Desai Senior Professional

S.A. Kehan

Syed Rehan, P.E., BCEE Senior Principal

CR And an untrum

Ravi Arulanantham, Ph.D. Senior Principal

Project Number: WR2693

11 December 2020

CERTIFICATION STATEMENT

I, Mark Hardyment, certify under penalty of law that this document and all attachments were prepared under my direction or supervision, in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant civil penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Mark Hardyment Director, Transportation & Environmental Programs Hollywood Burbank Airport

Date

TABLE OF CONTENTS

Page

LIST	OF AG	CRONYMS AND ABBREVIATIONS	iv		
1.	INTRODUCTION				
	1.1 1.2 1.3	Terms of Reference Objectives Report Organization	1-2		
2.	AIR	PORT DESCRIPTION AND BACKGROUND	2-1		
	2.1 2.2 2.3 2.4 2.5	Airport and Vicinity Description Airport Geology Airport Hydrogeology Potential On-Site Sources of PFAS Previous Investigation Summary	2-1 2-1 2-2 2-2		
3.	GW	WORK PLAN IMPLEMENTATION	3-1		
	3.1 3.2 3.3 3.4 3.5	OverviewPre-Field ActivitiesSoil Investigation3.3.1 Sample Handling3.3.2 Laboratory Analysis3.3.3 Decontamination Procedures3.3.4 Location MappingGroundwater Investigation3.4.1 Groundwater Sample Handling3.4.2 Laboratory Analyses3.4.3 DecontaminationQuality Assurance/ Quality Control (QA/QC) Samples3.5.1 Field Duplicates3.5.2 Matrix Spike and Matrix Spike Duplicate Samples	3-1 3-2 3-3 3-3 3-3 3-3 3-3 3-3 3-5 3-5 3-6 3-6		
	3.6	3.5.3 Blanks Investigation-Derived Waste			
4		-			
4.		ULTS			
	4.1 4.2 4.3 4.4	Soil Groundwater QA/QC Samples Data Validation	4-1 4-2		

5.	CONCLUSIONS AND RECOMMENDATIONS		
	5.1	Conclusions	5-1
	5.2	Recommendations	5-3
6.	REF	FERENCES	6-1

LIST OF TABLES

- Table 1:2019 and 2020 Soil Investigation Results
- Table 2:
 Groundwater Monitoring Well Details
- Table 3: Groundwater Investigation Results
- Table 4: QA/QC Field Blank Results
- Table 5:QA/QC MS/MSD Results
- Table 6:BOU Extraction Well PFAS Data

LIST OF FIGURES

- Figure 1: Site Location
- Figure 2: Sampling Locations and BOU Extraction Well Locations

LIST OF APPENDICES

- Appendix A: LACDPH Permit
- Appendix B: Boring Log (SB-5A)
- Appendix C: Groundwater Monitoring Logs
- Appendix D: Waste Manifest
- Appendix E: Soils Laboratory Data
- Appendix F: Groundwater Laboratory Data
- Appendix G: Data Validation

LIST OF ACRONYMS AND ABBREVIATIONS

AFD	Airport Fire Department
AFFF	aqueous film-forming foam
ARFF	Aircraft Rescue Firefighting
AST	aboveground storage tank
bgs	below ground surface
BOU	Burbank Operable Unit
COC	chain of custody
DoD	Department of Defense
DoT	Department of Transportation
ELAP	Environmental Laboratory Accreditation Program
FAA	Federal Aviation Administration
FTA	Fire Training Areas
ft	feet
HASP	Health and Safety Plan
HDPE	high-density polyethylene
IDW	investigation derived waste
LACDPH	Los Angeles County Department of Public Health
LARWQCB	Los Angeles Regional Water Quality Control Board
LMCO	Lockheed Martin Corporation, Inc.
MS/MSD	Matrix Spike/Matrix Spike Duplicate
NHOU	North Hollywood Operable Unit
PFAS	per- and polyfluoroalkyl substances
PFHpA	Perfluoroheptanoic acid
PFHxA	Perfluorohexanoic acid
PFOA	Perfluorooctanoic acid
PFOS	Perfluorooctanesulfonic acid
PFPeA	Perfluoropentanoic acid
QA/QC	quality assurance/quality control
QSM	Quality Systems Manual
RL	Reporting Limit

SFV	San Fernando Valley
USCS	Unified Soil Classification System
USEPA	United States Environmental Protection Agency
VOCs	Volatile Organic Compounds

1. INTRODUCTION

1.1 <u>Terms of Reference</u>

On behalf of the Burbank-Glendale-Pasadena Airport Authority (the Authority), Geosyntec Consultants, Inc. (Geosyntec) has prepared this *Per- and Polyfluoroalkyl Substances (PFAS) Groundwater and Supplemental Soil Investigation Report* (the Report) for the Hollywood Burbank Airport¹ (the Airport) to fulfill the requirements of *Water Code Section 13267 Order WQ 2019-0005-DWQ for the Determination of the Presence of Per- and Polyfluoroalkyl Substances at Bob Hope, Airport ID BUR, Los Angeles County, T10000012771 (the Order). The Order was issued by the State Water Resources Control Board and transmitted to the Authority by the Los Angeles Regional Water Quality Control Board (LARWQCB) and was dated 20 March 2019. The Order required (i) the preparation of a Work Plan to conduct a site investigation to determine whether soil or groundwater is impacted by PFAS, and (ii) to provide a final sampling and analysis report (LARWQCB, 2019a).*

In accordance with the Order, Geosyntec prepared the *Per- and Polyfluoroalkyl Substances (PFAS) Investigation Work Plan* (Soil Work Plan) dated 11 June 2019 to perform soil investigation at four locations (SB-1 through SB-4) where PFAS may have potentially released in the subsurface at the Airport (Geosyntec, 2019a). The Soil Work Plan was approved by the LARWQCB (LARWQCB, 2019b) in a letter dated 20 August 2019 (the Letter) with the following additional scope that was either indicated in the Letter or agreed upon between the LARWQCB and the Airport during phone conversations (also documented in an email dated 26 November 2019 from Jake Sneider of Geosyntec to Nicole Alkov of the LARWQCB).

- 1. Add an additional soil sample location (SB-5) near the aqueous film-forming foam (AFFF) aboveground storage tank (AST) in the fuel farm area;
- 2. Add two soil sample locations (SB-6 and SB-7) at the two former burn pits²;
- 3. Drill each of the now seven locations to 50 feet (ft) below ground surface (bgs) instead of the proposed 30 ft bgs, while collecting and analyzing soil samples at the surface (at 1 ft bgs), then every 5 ft to 30 ft bgs, then every 10 ft to 50 ft bgs.

¹ The Order refers to the Airport as "Bob Hope" based on the FAA's Airport Master Record's website. Although the Airport's legal name is the Bob Hope Airport, the Airport is now publicly referred to as the Hollywood Burbank Airport and will be referred to as such in this Work Plan. The Authority owns and operates the Hollywood Burbank Airport.

² After submittal of the Soil Work Plan, further due diligence work conducted by the Airport staff revealed that there were two former burn pit areas potentially used by former occupants of the Airport to conduct training activities utilizing fire-suppression materials potentially including AFFF. Upon learning of these burn pit areas, Airport staff instructed Geosyntee to conduct sampling in these areas in addition to the scope proposed in the Soil Work Plan and to also notify the LARWQCB.

Geosyntec implemented the Soil Work Plan including the additional scope and submitted the *PFAS Soils Investigation Report* to the LARWQCB on 6 February 2020 (Geosyntec, 2020).

In addition to the above, the Letter also required the preparation of separate groundwater sampling work plan to investigate the presence of PFAS in groundwater monitoring wells within the immediate/surrounding area of the Airport. In accordance with this requirement, Geosyntec prepared *PFAS Groundwater Sampling Work Plan* (GW Work Plan) and submitted to the LARWQCB on 27 November 2019 (Geosyntec, 2019b). The GW Work Plan proposed collecting and analyzing groundwater samples from six selected existing monitoring wells (owned by Lockheed Martin Corporation [LMCO]) screened in the first occurring groundwater unit located within and in the close vicinity of the Airport via low flow sampling. The LARWQCB approved the GW Work Plan in its letter dated 20 April 2020 and requested collection and analysis of an additional grab groundwater sample from the former soil sample location SB-5 via a temporary well or HydropunchTM (LARWQCB, 2020). To be able to understand the grab groundwater data from that sampling location, it was further decided (after discussion with the Airport) to also collect soil samples at the SB-5 adjacent location at every 10-foot interval starting from 60³ ft bgs to the depth of groundwater.

This document reports the implementation of the GW Work Plan including the additional scope listed above.

On behalf of Geosyntec, the investigation was managed by Mital Desai and Julia Loper. The Report was prepared by Mital Desai and Julia Loper and senior review was provided by Ravi Arulanantham and Syed Rehan P.E., in accordance with Geosyntec's quality assurance policies.

1.2 **Objectives**

The purpose of this Report is to present the results of the PFAS groundwater and soil investigation that was performed pursuant to the GW Work Plan and pertaining additional scope. The Report and its attachments include:

- Scaled maps of the investigation locations;
- Data tables showing the analytical results;

³ Since SB-5 was already sampled to 44 ft bgs, a sampling next to that original SB-5 location was proposed to be sample from 60 ft bgs to groundwater.

- Boring logs describing subsurface materials encountered;
- Laboratory reports with chain-of custody (COC) documentation;
- Permits from Los Angeles County Department of Public Health (LACDPH); and
- Evaluation of the data, conclusions, and recommendations.

1.3 <u>Report Organization</u>

The remainder of this Report is organized into the following sections:

- Section 2, "Airport Description and Background," which describes Airport, historical PFAS storage and use, geology, and hydrogeology;
- Section 3, "GW *Work Plan Implementation*," which describes detail of limited soil and groundwater investigation;
- Section 4, "*Results of Soil and Groundwater Investigation*," which describes the results of investigation as well as Quality Assurance/Quality Control (QA/QC) samples;
- Section 6, "Conclusion and Recommendation," and
- Section 7, "*References*."

2. AIRPORT DESCRIPTION AND BACKGROUND

2.1 <u>Airport and Vicinity Description</u>

The Airport is located in the eastern part of the San Fernando Valley, west of the Verdugo Mountains and north of the Santa Monica Mountains on approximately 555 acres at the northwestern corner of the City of Burbank within a developed, urbanized region⁴ (Figure 1). The Airport has been in use for commercial, general, and military aviation services since the 1930s. The Authority acquired the initial Airport property in 1978; prior to that, the Airport was owned and operated by LMCO or its predecessors in interest. LMCO also formerly operated industrial facilities to north, south, east, and west of the Airport.

The Airport has two intersecting runways: runway 8/26 runs east-west and is approximately 5,800 feet long; and runway 15/33 runs north-south and is approximately 6,900 feet long. There is one passenger terminal building with two passenger terminals and a total of 14 gates located south of runway 8/26 and east of runway 15/33.

The Airport is fully developed and mostly paved. The terrain of the Airport is relatively flat with surface grading directing stormwater/surface water to the Lockheed Channel, which drains to the Burbank Western Channel, which then flows into the Los Angeles River (RS&H, 2016). Land use immediately surrounding the Airport is primarily industrial, with some commercial and low to high density residential areas generally to the southeast.

The Airport is located within both the North Hollywood Operable Unit and Burbank Operable Unit (BOU) of the San Fernando Valley (SFV) Superfund Area 1. The SFV Area 1 site consists of an area of volatile organic compound (VOC)-contaminated groundwater encompassing approximately 13 square miles beneath the Cities of North Hollywood and Burbank.

The prevalence of former and current industrial land uses in the areas surrounding the Airport suggest that other sources of PFAS may be present.

2.2 <u>Airport Geology</u>

The Airport is located in the San Fernando Valley, which is a Tertiary-Quaternary age sediment-filled basin within the Transverse Ranges geomorphic provinces of southern California (RS&H, 2016). The soils underlying the Airport consist of compacted fill underlain by younger Holocene and late Pleistocene alluvial fan deposits (Geosyntec,

⁴ A portion of the Airport property is located within the City of Los Angeles; see Figure 1.

2017), (RS&H, 2016). The alluvium extends to depths of more than 100 ft bgs and consists of unconsolidated gravel, sand, and silt (RS&H, 2016).

2.3 <u>Airport Hydrogeology</u>

The Airport is located within the San Fernando Valley Groundwater basin, which is comprised of water-bearing alluvium overlying bedrock. Groundwater flow at the Airport is towards the southeast. Offsite downgradient groundwater monitoring wells measured in 2017 indicated groundwater underlying the Airport ranges in depth from approximately 230 to 290 ft bgs (Tetra Tech, 2017).

There are operating extraction wells that are part of the BOU treatment system located downgradient of the Airport. The BOU extraction wells are active pumping wells and likely capture groundwater flowing beneath the Airport. A recent capture zone evaluation indicates the BOU extraction wells exert hydraulic containment of the VOC plumes originating from the BOU that underly the Airport (Tetra Tech, 2017).

2.4 <u>Potential On-Site Sources of PFAS</u>

The Federal Aviation Administration (FAA) mandates that federally regulated airports, such as the Hollywood Burbank Airport, maintain and have ready Aircraft Rescue and Firefighting (ARFF) vehicles and has published guidance on types of aircraft fire extinguishing agents, such as AFFF. Thus, AFFF has been used at various airports as a fire-extinguishing agent to prevent, extinguish, or control fires of flammable and combustible liquids such as crude oil, gasoline, and fuel oils. AFFF generates foam that retains water, separates fuel from flame, and ultimately results in fast reduction and containment of fires. AFFF products are diluted prior to use. Currently, the FAA requires that all certified Part 139 airports including the Airport, use AFFF that meet military specifications (MIL-PRF-24385) which contains PFAS compounds (FAA, 2019a). However, due to growing concern over the use and discharge of AFFF at airports, a mandate has been included within the FAA Reauthorization Act of 2018 (FAA, 2019b), directing the FAA to stop requiring the use of fluorinated foam no later than 3 years from the date of enactment (or on October 4, 2021).

Potential areas of PFAS releases were evaluated in the Soil Work Plan using information provided by the Authority regarding current and historical locations for AFFF storage, use, and potential release at the Airport. These potential areas, the corresponding soil investigation location and its results (from 2019 investigation) are discussed in the next section.

2.5 <u>Previous Investigation Summary</u>

As indicated in the Soil Work P	Plan, the Airport does not	t have a live-fire drill site (also
---------------------------------	----------------------------	-------------------------------------

Soil Investigation Scope Area	Description of Past Potential Release	Soil Sample Investigation Location
Unpaved area near the T- Hangars	AFFF was reportedly used during refraction testing ⁵ and Airport Fire Department (AFD) training activities.	SB-1
Unpaved former B-6 property	AFFF was reportedly used during AFD training activities	SB-2
Unpaved dirt lot area north of the Delta Ramp	AFFF was reportedly used during AFD training activities	SB-3
Southwest Flight 1455 (SW 1455) incident area	A one-time use of AFFF was reported to prevent fires at the incident site (the sample location was selected based on historical photographs indicating an area where AFFF was released that was unpaved at the time of the incident).	SB-4
1,500-gallon AFFF AST located at the Fuel Farm area	AFFF may have potentially released during filling or testing operations from this AST, though no release is documented.	SB-5
Two former burn pit areas including the Former Civil Air Patrol Fire Pit and the Former Bunker Simulated Gasoline Fire Pit.	Two former burn pit areas (identified and mapped using historical documents) may have been used by former occupants of the Airport property to conduct training activities utilizing fire- suppression materials potentially including AFFF. The sample locations were placed at the approximate center of each burn pit area.	SB-6 (Former Civil Air Patrol Fire Pit) SB-7 (Former Bunker Simulated Gasoline Fire Pit)

known as fire training areas [FTA]), in which AFFF may be used to put out live fires in a controlled burn scenario. However, Airport Fire Department (AFD) performs refraction testing, testing of ARFF trucks and routine and non-routine training during which small quantities of AFFF have been used. The above table describes such potential areas and its corresponding soil investigation locations. As noted in Section 1.1, Geosyntec implemented the Soil Work Plan and investigated these seven locations (SB-1 through

⁵ Refraction testing of each ARFF truck operated by the AFD is conducted annually. During this testing, approximately 100 gallons of AFFF is released onto the land surface and tested with a refractometer to evaluate that the foam mixture coming from every appurtenance on each truck matches the required concentration specifications as required by federal FAA standards.

SB-7) of potential PFAS release. The results (Table 1, Figure 2) of this investigation (Geosyntec, 2020) are summarized as follows:

- PFAS compounds were detected at SB-1 (unpaved area near the T-Hangars where AFFF was used during refraction testing and AFD training activities) in 1 and 10 ft bgs soil samples. PFAS were not detected below 10 ft bgs. The results indicate minor release(s) with impact limited to shallow soils at the T-Hangar area.
- With the exception of a few sporadic detections of PFAS in surface and shallow soil samples, PFAS were not detected below 15 ft bgs at SB-2, SB-4 and SB-6. The detections were limited to five, one and four PFAS compounds at locations SB-2 (former B-6 property where AFFF was used during AFD training activities), SB-4 (SW1455 incident area) and SB-6 (former Civil Air Patrol Fire Pit) respectively and at concentrations less than 5 ng/g. The sporadic and less than 5 ng/g detections are not indicative of a release but perhaps indicative of background conditions (although there are no naturally occurring levels of PFAS, background conditions mean anthropogenic background representative of impacts from other industrial sources⁶ including aerially deposited PFAS over several years) and due to fairly widespread detection of these compounds observed in environmental samples.
- Four PFAS compounds were sporadically detected at SB-7 (former Bunker Simulated Gasoline Fire Pit); majority of the detections were below 5 ng/g. PFAS was not detected below a depth of 40 ft bgs at SB-7. The sporadic and detections of less than 5 ng/g are not indicative of a release but perhaps indicative of background conditions (defined in the above bullet) and due to fairly widespread detection of these compounds observed in environmental samples.
- PFAS concentrations decreased with depth but were detected through the soil column down to the termination depth at SB-3 (unpaved dirt lot area north of the Delta ramp where AFFF was used during AFD training activities) and SB-5 (1,500-gallon AFFF AST located at the Fuel Farm). However, PFAS were detected at SB-3 at and below 21 ft bgs in concentrations of less than 5 ng/g with the exception of 6:2 Fluorotelomersulfonic acid (6:2 FTS). On the other hand, detections of Perfluorohexanoic acid (PFHxA) and Perfluoropentanoic acid (PFPeA) were generally above 5 ng/g in the entire soil column investigated at SB-5.

In summary, with the exception of SB-3 and SB-5, the data is not indicative of a major release and at some locations are perhaps indicative of background conditions of an industrial land use of more than 80 years. At SB-3, the PFAS detections generally show

⁶ The use of PFAS in the US predates World War II.

a decreasing trend with depth, and groundwater in this area is relatively deep (approximately 230 to 290 ft bgs) therefore groundwater impacts from SB-3 are not likely. Further investigation was however proposed in the GW Work Plan to evaluate the groundwater impacts at SB-5 and generally in the vicinity of the Airport as described in Sections 3 and 4.

3. GW WORK PLAN IMPLEMENTATION

3.1 <u>Overview</u>

As indicated in Section 1.1, the investigation included the following scope:

- Collection and analysis of groundwater samples from six selected existing monitoring wells (Figure 2) via low flow sampling;
- Collection and analysis of soil samples from a location adjacent to the previous soil sample location SB-5 (co-located boring is identified as SB-5A, Figure 2) at every 10-foot interval starting from 60 ft bgs to the groundwater; and
- Collection and analysis of a grab groundwater sample from SB-5A via a temporary well or Hydropunch[™].

The six groundwater monitoring wells used for sampling were selected from the available LMCO's active monitoring well network in the vicinity of the Airport. Criteria used to select the wells included a) the ability to collect groundwater samples from the first occurring groundwater unit (water table) within and in the close vicinity of the Airport, and b) with logistical challenges (e.g. access issues) that the Authority believes can be resolved in a reasonable time frame and manner. The groundwater and soils investigation described in this section was performed between 8 September 2020 and 17 September 2020 in accordance with the procedures and precautions described in the GW Work Plan and in accordance with the California State Water Quality Control Boards' Per- and Polyfluoroalkyl Substances (PFAS) Sampling Guidelines for Non-Drinking Water dated September 2020 (Guidelines).

3.2 <u>Pre-Field Activities</u>

A project-specific health and safety plan (HASP) was prepared in general accordance with the most current Occupational Safety and Health Administration regulations, including 29 CFR 1910.120, Hazardous Waste Operations and Emergency Response. The HASP was maintained at the Airport and implemented during the activities described herein. Prior to beginning of the fieldwork each day, a tailgate safety meeting was conducted and signed by all field personnel. The entire field team (contractors as well as Geosyntec field staff) was made aware of precautions specific to PFAS sampling including 1) equipment/material that are acceptable/not acceptable for use in PFAS sampling and 2) preventing cross-contamination during the implementation of the scope. Additional health and safety measures related to COVID-19 were amended to the HASP and discussed with the field team.

A drilling permit was obtained from the Los Angeles County Department of Public Health (LACDPH) to conduct drilling activities at SB-5A (Appendix A). In addition, field work

was performed after extensive planning and coordination with the Airport Airfield Operations and other airport management entities to gain access to investigation locations and to conduct work safely.

Prior to the commencement of fieldwork, Dig Alert was notified, and underground utility clearance was completed at investigation location SB-5A. A combination of electromagnetic induction and ground penetrating radar was employed to screen the borehole locations. The boring location was further cleared by hand auger to 5 ft bgs.

3.3 Soil Investigation

After hand augering to a depth of 5 ft bgs, a sonic drill rig (TSI150CC) was advanced by Cascade Drilling Technical Services at location SB-5A via 7-inch core barrel telescoping to 6-inch to a target depth of 250 ft bgs or groundwater. The core barrel produces a relatively undisturbed sample which is then extruded into a clear plastic sleeve. The clear plastic is cut open (length wise) to allow for sampling and logging.

Soil samples were collected for laboratory analysis in 10-foot intervals from 60 ft bgs to 160 ft bgs until refusal was encountered at 165 ft bgs. The soil samples were collected from the center of the plastic sleeve to obtain the undisturbed core. Soil samples were placed in the high-density polyethylene (HDPE) containers provided by the laboratory and were capped immediately and labelled using a ball-point pen.

After samples were collected, the continuous core was logged starting⁷ from 50 ft bgs in accordance with the Unified Soil Classification System (USCS) under the supervision of a California Professional Geologist (PG), see Appendix B for boring log of SB-5A.

Subsurface conditions (i.e. encountering large cobbles) resulted in drilling refusal at 165 ft bgs. An effort to drill through the refusal caused the drill rod to snap at about 70 ft bgs, leaving almost 100 feet of tooling in the ground. After multiple attempts, all tooling except for the drilling shoe were retrieved. The borehole could not be advanced without retrieving the shoe. After discussion with Nicole Alkov of the LARWQCB, who was present at the Site at that time, a decision was made to abandon the borehole at a depth of 165 ft bgs. The borehole was backfilled with Portland cement grout via tremie pipe and capped with concrete to match the existing surface. As a result of refusal at 165 ft bgs, groundwater was not encountered which is relatively deep (approximately 230 to 290 ft bgs).

⁷ SB-5 was already logged to 44 ft bgs during the soil PFAS investigation in 2019 and therefore logging at nearby SB-5A began at 50 ft bgs.

3.3.1 Sample Handling

Soil samples were labeled with a unique identifier based on the sample location (SB-5A), followed by a hyphen and the depth of sample in ft bgs (e.g., soil sample collected at a depth of 60 ft bgs was designated as SB-5A-60). The samples were logged on laboratory Chain of Custody (COC) forms and placed in a sealed ice chest with double-bagged ice for shipment to the laboratory.

3.3.2 Laboratory Analysis

Soil samples were analyzed for 23 PFAS analytes via Modified USEPA Method 537 by Eurofins Test America (Eurofins) of Sacramento, CA, consistent with the Order. Sample bottles and PFAS-free water were provided by Eurofins. Eurofins is accredited by the California Environmental Laboratory Accreditation Program (ELAP) for PFAS analyses in compliance with Department of Defense (DOD) Table B-15 of Quality System Manual (QSM) Version 5.1 or later.

3.3.3 Decontamination Procedures

Non-dedicated reusable large sampling equipment (e.g., core barrels) was decontaminated before initiation of sampling operations and between depth intervals using potable water and a high-pressure washer.

Smaller equipment (e.g. drill shoe, hand auger) were decontaminated via a "three-bucketwash" method. The equipment was first washed using a solution of Liquinox® made with potable water, followed by a first rinse using distilled water and a second rinse with laboratory-certified, PFAS-free water.

3.3.4 Location Mapping

The location of the soil boring SB-5A was mapped in the field by measuring distances to nearby structures and/or features.

3.4 Groundwater Investigation

Groundwater samples were collected from the six selected existing groundwater monitoring wells (Table 2, Figure 2) in general accordance with the *Revised Final Focused Feasibility Study Groundwater Monitoring Sampling and Analysis Plan* for BOU dated 29 March 2019 (Brown and Caldwell/SLR International, 2019).

Fourteen (14) days prior to collecting samples, dedicated pumps and tubing installed in five out of six wells were removed because the material of construction of these pumps, its components or its tubing were not compatible for PFAS sampling. Based on the

hydraulic conductivity in the area and professional judgement, 14 days was ample time for the standing water column to be replaced with fresh formation water. Well C-1-CW06 had dedicated pump (QED's Well Wizard® Zero Model # P1101HM-Z) and HDPE tubing which are compatible for PFAS sampling and were therefore not removed.

After 14 days of pump removal, groundwater sampling was performed using low-flow sampling techniques via the following equipment:

- A-1-CW03R, A-1-CW09, C-1-CW03 and C-1-CW08 non-dedicated 3-inch Grundfos Model # 5SQ450 with disposable HDPE tubing
- B-6-CW10 non-dedicated QED Sample Pro bladder⁸ pump with disposable HDPE tubing
- C-1-CW06 dedicated QED's Well Wizard® Zero Model # P1101HM-Z with HDPE tubing

Groundwater was purged via submersible pumps at a range of 200 to 600 ml per minute with little to no water level drawdown until the field water quality parameters such pH, electrical conductivity (EC), temperature, oxidation-reduction potential (ORP), dissolved oxygen (DO), total dissolved solids (TDS) and turbidity levels of the purge water stabilized to approximately within the following metrics:

- ± 0.1 units for pH;
- $\pm 3\%$ for EC;
- $\pm 10 \text{ mV}$ for ORP;
- $\pm 3\%$ for temperature;
- $\pm 10\%$ for turbidity; and
- $\pm 10\%$ for DO

The groundwater level at each well was also measured (Table 2) prior to and during the purging. The groundwater monitoring logs with the field water quality parameter measurements is provided in Appendix C. Once steady-state conditions were reached during purging, groundwater samples were collected in 250-ml HDPE bottles (2 bottles

⁸ An obstruction was encountered in this well not allowing the 3-inch Grundos pump to reach the desired depth for sampling. Consequently, a smaller diameter QED Sample Pro Bladder pump was used with LDPE bladder to perform purging and sampling at this well.

per sample) with unlined (no Teflon) polyethylene screw caps for PFAS and for general water chemistry parameters as described in the Order.

The dedicated pumps and tubing removed from the five wells were reinstalled in each well after samples were collected.

3.4.1 Groundwater Sample Handling

The groundwater samples were designated using the monitoring well's ID (e.g., the groundwater sample collected from A-1-CW09 was designated as A-1-CW09 and the groundwater collected from B-6-CW10 was designated as B-6-CW10). The groundwater samples were labeled with unique identifiers as described above, logged on COC forms, and placed in a sealed ice chest with ice for shipment to the laboratory.

3.4.2 Laboratory Analyses

Groundwater samples were analyzed for the mandatory 23 PFAS analytes by Eurofins via Modified USEPA Method 537 compliant with the Order. Sample bottles and PFAS free water was also provided by the laboratory.

In addition to the PFAS analytes, groundwater samples were analyzed for the following general water chemistry parameters by ELAP certified Eurofins Calscience of Garden Grove, California, as indicated in Table 4 of the Order:

- Total dissolved solids via Standard Method (SM) 2540C;
- Chloride, sulfate, and nitrate-nitrogen by United States Environmental Protection Agency (USEPA) 300;
- Carbonate and bicarbonate by SM2320B; and
- Calcium, magnesium, potassium and sodium by USEPA 6010B.

3.4.3 Decontamination

Before collecting groundwater samples, non-dedicated equipment was decontaminated prior to and between each location. Non-dedicated sampling equipment (e.g., water level probes, submersible pump) were decontaminated by the "three-bucket-wash" method. The equipment was first washed using a solution of Liquinox® made with potable water, followed by a first rinse using distilled water and a second rinse using laboratory-certified, PFAS-free water. Although instead of buckets, PVC tubes were used that were long enough to submerge the entire pump. The pump was inserted in the PVC tubes and was allowed to run while recirculating the solution and rinse waters for approximately three minutes for a thorough decontamination.

3.5 <u>Quality Assurance/ Quality Control (QA/QC) Samples</u>

The following QA/QC samples were collected during this investigation.

3.5.1 Field Duplicates

Field duplicates are samples collected in the same manner and at the same time and location as the primary sample. Field duplicates are used to assess field and analytical precision and sample heterogeneity. One field duplicate was collected for every 10 primary soil and groundwater samples.

3.5.2 Matrix Spike and Matrix Spike Duplicate Samples

Matrix spike and matrix spike duplicate (MS/MSD) samples are aliquots of environmental samples that are spiked with a known concentration of PFAS by the laboratory. MS/MSD samples are used to assess interferences caused by the sample matrix. MS/MSD samples were collected in the same manner and at the same time and location as a primary sample (i.e., additional sample mass). MS/MSD samples were collected such that the samples appear visually similar (e.g., color, grain size), to the primary sample. One MS/MSD sample was collected for every 20 primary soil and groundwater samples.

3.5.3 Blanks

Three types of blank samples were collected during this investigation and each was shipped and handled in the same manner as primary environmental samples. The types of blank samples collected include the following:

Equipment Blanks: Equipment blanks are used to assess potential presence of field cross-contamination. Equipment blanks were prepared by pouring PFAS-free water over or through decontaminated reusable field sampling equipment (e.g. core barrel, submersible pumps) and collecting the rinsate in a sample container. One equipment blank was collected each day of sampling. A total of 5 equipment blanks were collected during the soil and groundwater investigation.

Field Blanks: Field blanks are used to assess ambient contamination within the field and laboratory. Field blanks were prepared by filling a sample container with PFAS-free water in the field in the same manner as environmental samples. Field blanks are an effective way of assessing potential cross-contamination as a result of sample handling. One field blank was collected each day of sampling for a total of 5 field blanks.

<u>**Temperature Blanks</u>**: Temperature blanks are used to assess the temperature of samples during shipping. Temperature blanks were provided by the laboratory by filling a sample container with water prior to shipment of the sample containers. The blank was kept in</u>

the cooler during sampling and shipment to the laboratory. Once the cooler was returned to the laboratory, the temperature of the blank was measured to ensure that recommended sample storage criteria were met (typically less than 6 degrees Celsius).

3.6 Investigation-Derived Waste

Soil cuttings, purge water and decontamination water constitute investigation derived waste (IDW) generated during this investigation. The IDW were contained in Department of Transportation (DOT)-approved 55- gallon drums, properly labeled and stored at a pre-assigned drum storage area located inside the Fuel Farm (for soil IDW) and maintenance yard (for water IDW). The IDW was characterized, profiled, and appropriately disposed of (manifest included in Appendix D).

4. **RESULTS**

This section describes the results of soil and groundwater investigation performed pursuant to the GW Work Plan and additional scopes described in Section 1.1 and 3.1. The laboratory reports are provided in Appendix E and F for soil and groundwater respectively and are summarized in Table 1 and 3 respectively.

4.1 <u>Soil</u>

The results of soil investigation at SB-5A (co-located with SB-5) are presented in Table 1 and described below:

• Three of the 23 target PFAS compounds were detected in soil samples collected at SB-5A: PFHxA, PFPeA, and Perfluoroheptanoic acid (PFHpA) from 60 to 120 ft bgs. PFAS were not detected in soil samples below 120 ft bgs. The detections from 90 to 120 ft bgs were below 5 ng/g. Although subsurface impacts are evident from 1500-gallon AFFF AST area, the concentrations show decreasing trend with depth (based on results from SB-5 and SB-5A), and indicates (based on results from SB-5A) that the impacts are limited to 120 ft bgs and do not extend to the groundwater which is approximately 230 to 290 ft bgs.

4.2 Groundwater

The results of groundwater investigation are presented in Table 3 and summarized below. The detections in groundwater monitoring wells are likely from other sources not related to Airport's use of AFFF as explained below as well as in Section 5.1:

- At A-1-CW03R, twelve of the 23 target analytes were detected in groundwater sample ranging from 1.8 ng/L to 120 ng/L. Perfluorooctanoic acid (PFOA) and Perfluorooctanesulfonic acid (PFOS) were detected at 7.4 and 15 ng/L respectively. The location of this groundwater monitoring well is hydraulically downgradient of SB-4 (SW 1455 incident area), however, based on the soil results at SB-4 (i.e. only PFOS was detected upto 15 ft bgs, highest concentrations of PFOS was 1.7 ng/L at 5 ft bgs, PFAS compounds were not detected below 15 ft bgs and groundwater is at approximately 220 ft bgs), SW1455 incident area does not appear to be the source of groundwater impact at A-1-CW03R.
- At A-1-CW09 (located hydraulically downgradient of the Airport), ten of the 23 target analytes were detected in groundwater sample ranging from 1.8 ng/L to 21 ng/L. PFOA and PFOS were detected at 3.0 and 3.4 ng/L respectively. A potential PFAS release, from Airport's operation, in the immediate vicinity of this well is not known.

- At B-6-CW10, eight of the 23 target analytes were detected in groundwater sample ranging from 73 ng/L to 670 ng/L. PFOA was detected at 170 ng/g. PFOS was not detected. A potential PFAS release, from Airport's operation, in the close vicinity of this well is not known. The location of this groundwater monitoring well is hydraulically downgradient of SB-1 (near the T-Hangars were AFFF may have been released), SB-2 (former B-6 property where small quantities of AFFF may have been released during training activities), and SB-5/5A (location of 1500-gallon AFFF AST). Based on the soil sampling results at these locations described in Section 2.5 (for SB-1, SB-2 and SB-5) and 4.1 (for SB-5A), these areas do not appear to be the source of groundwater impact at B-6-CW10.
- At C-1-CW03 and C-1-CW08, five and seven of the 23 target analytes were detected in groundwater samples at levels below 5 ng/L. PFOA and PFOS were in the range of non-detect to 4.4 ng/L. The locations of these groundwater monitoring wells are in the vicinity (upgradient and cross gradient) of SB-3 (unpaved dirt lot area north of the Delta Ramp where a minor quantity of AFFF was potentially released during AFD training activities). Although four out of 23 target analytes were detected at SB-3 in the entire soil column investigated (48 ft bgs), the concentrations at and below 21 ft bgs were less than 5 ng/g with the exception of 6:2 FTS. The striking difference between the soil (at SB-3) and groundwater (at C-1-CW03 and C-1-CW08) data is the composition of the PFAS compounds present in them. While 6:2 FTS is the predominant PFAS present in the soil (indicating potential release of newer AFFF formulations), it is non-detect in groundwater of both the samples. Based on this difference in composition and the depth to groundwater (245 to 255 ft bgs), the apparent release at SB-3 while impacted the shallow soil it does not appear to have impacted the groundwater.
- At C-1-CW06, four of the 23 target analytes were detected in groundwater sample ranging from 1.9 ng/L to 5.4 ng/L. PFOA and PFOS were not detected. The location of this groundwater monitoring well is in the vicinity of SB-7 (former Bunker Simulated Gasoline Fire Pit). Based on the sporadic and detections of less than 5 ng/g of four analytes (out of 23 analyzed) at SB-7, groundwater at depth of 235 ft bgs, the potential release at SB-7 does not appear to have impacted the groundwater.

4.3 <u>QA/QC Samples</u>

A QA/QC program was implemented that included testing of blank samples (equipment, field, and laboratory method blanks), field duplicates, and MS/MSD duplicates. PFAS were detected in field QC samples (Equipment Blank, Field blank) above the RL for one day (8 September 2020) of the sampling program, indicating potential contamination in

the field⁹ or laboratory contamination. PFAS were not detected in the field QA/QC samples for remainder of the sampling event. The QA/QC blank results are presented in Table 4 and the MS/MSD results are presented in Table 5.

4.4 Data Validation

The laboratory data were reviewed and validated by Geosyntec's in-house data validation specialists (Appendix G). The data were validated at a USEPA Stage 2A data validation level, based on the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, January 2017 (EPA 540-R-2017-002); and USEPA Contract Laboratory Program National Functional Guidelines for High Resolution Superfund Organic Methods Data Review, April 2016 (USEPA-542-B-2016-001), as well as by the pertinent methods referenced by the data package and professional and technical judgment.

The laboratory reported data were qualified but are consider acceptable for use in evaluating the results of this investigation. Data should be used within the limitations of the applied qualifications as detailed in Appendix G.

⁹ Despite following the precautions for PFAS sampling in accordance with the Guidelines, the field blank sample collected on 8 September had unusually high concentrations of PFOA. This could be potentially related to the poor air quality from a number of wildfires in the area. However, PFOA was not detected in the primary sample.

5. CONCLUSIONS AND RECOMMENDATIONS

This Report presents the results of the groundwater and limited soil investigation that was performed pursuant to the LARWQCB-approved GW Work Plan and the additional scope described in 1.1 and 3.1. Based on the results of the current investigation and the soil investigation performed in 2019, we provide the following conclusions and recommendations.

5.1 <u>Conclusions</u>

Between the soil and groundwater investigations performed at the known or suspect locations of PFAS usage and/or releases at the Airport in 2019 and 2020, the following is concluded for each potential release area:

- AFFF use near the T-Hangars (SB-1) PFAS compounds were primarily detected in the surface sample (1 ft bgs) and not detected below 10 ft bgs. The results indicate minor release(s) with impact limited to shallow soils and no impact to groundwater.
- AFFF use at the former B-6 property (SB-2) With the exception of a few sporadic detections of PFAS in surface and shallow soil samples, PFAS were not detected below 5 ft bgs. The sporadic and detections of less than 5 ng/g are not indicative of a release but perhaps indicative of background conditions and also due to fairly widespread detection of these compounds in environmental samples.
- AFFF use north of the Delta Ramp (SB-3) PFAS concentrations decreased with depth but were detected throughout the soil column down to the termination depth at SB-3 (48 ft bgs). However, PFAS were detected at and below 21 ft bgs in concentrations of less than 5 ng/g with the exception of 6:2 FTS. Although soil impacts are evident at this location, the concentration indicate decreasing trend with depth, the groundwater is deep (245 to 255 ft bgs) and the groundwater concentration at C-1-CW03 and C-1-CW08 do not appear to be impacted from the shallow soil impacts (striking difference between the soil and groundwater composition is observed as discussed in Section 4.2).
- AFFF use at SW1455 incident area (SB-4) PFOS was the only analyte detected in shallow soils (upto 15 ft bgs) at concentrations less than 5 ng/g. The sporadic and detections of less than 5 ng/g are not indicative of a release but perhaps indicative of background conditions and also due to fairly widespread detection of these compounds in environmental samples.

- 1,500-gallon AFFF AST (SB-5/SB-5A) PFAS concentrations and number of detected analytes decreased with depth until they reached non-detects level below 120 ft bgs (upto the investigated depth of 160 ft bgs). Although soil impacts are evident at this location, the concentrations indicate decreasing trend with depth and the impacts does not appear to extend beyond 120 ft bgs or reach groundwater.
- Former Civil Air Patrol Fire Pit (SB-6) and former Bunker Simulated Gasoline Fire Pit (SB-7) Four PFAS compounds were sporadically detected and majority of the detections were below 5 ng/g. The sporadic and detections of less than 5 ng/g are not indicative of a release but perhaps indicative of background conditions and also due to fairly widespread detection of these compounds in environmental samples.

The following is concluded for the groundwater:

As indicated in the Soil Work Plan and in Section 2.5, Airport does not have a ٠ live-fire drill site (or FTA), in which AFFF is used to put out live fires in a controlled burn scenario. The AFFF use/release at the Airport are related to non-FTA such as emergency response location, AFFF storage tanks, fire department testing and training etc. A study performed by Anderson et al to evaluate PFAS occurrence from historical AFFF release at a diverse group of non-FTA sites on active United States Air Force installation indicated that across all sites and media, PFOS was the predominant PFAS detected followed by PFHxS. PFOA was detected but generally at much lower concentrations (Anderson et al., 2016). This profile is also consistent with previous investigation of AFFF-impacted groundwater at FTAs associated with U.S. military installation wherein PFOS and PFHxS are the prominent PFASs detected, followed by PFOA. (Barzen-Hanson and Field, 2015; Moody et al., 2003). The groundwater results from the monitoring wells sampled and presented herein including the BOU¹⁰ extraction wells (Table 6) indicate predominance of PFHxA, followed by PFPeA, followed by PFBA. The significant difference in chemical composition in groundwater from the cited studies to that observed near the vicinity of the Airport, indicates that the groundwater is not likely impacted from AFFF-use/potential release at the Airport but likely from other sources.

¹⁰ Based on the data obtained from Burbank Operable Unit database (<u>https://sdwis.waterboards.ca.gov/PDWW/JSP/MonitoringResults.jsp?tinwsys_is_number=2608&tinwsys_st_code=CA&counter=0</u>).

5.2 <u>Recommendations</u>

The nature and occurrence of PFAS chemicals in soils and groundwater at potential PFAS source areas have been characterized in compliance with, and fulfillment of, the requirements of the Order. Based on the findings and conclusions presented above although soil impacts are observed at certain locations, they do not extend to the groundwater that is relatively deep at the Site. Therefore, Geosyntec recommends no additional investigations at the Airport at this time.

6. **REFERENCES**

- Anderson, R.H., Long, G.C., Porter, R.C., Anderson, J.K., 2016. Occurrence of select perfluoroalkyl substances at US Air Force aqueous film-forming foam release sites other than fire-training areas: Field-validation of critical fate and transport properties. Chemosphere 150, 678–685.
- Barzen-Hanson, K.A., Field, J.A., 2015. Discovery and implications of C2 and C3 perfluoroalkyl sulfonates in aqueous film-forming foams and groundwater. Environ. Sci. Technol. Lett. 2 (4), 95e99.
- Brown and Caldwell/SLR International. 2019. Revised Final Focused Feasibility Study Groundwater Monitoring Sampling and Analysis Plan for BOU. 29 March.
- Federal Aviation Administration (FAA). 2019a. National Part 139 CertAlert, AqueousFilm Forming Foam (AFFF) Testing at Certificated Part 139 Airports. No. 19-01.17 January.
- Federal Aviation Administration (FAA). 2019b. National Part 139 CertAlert, AqueousFilm Forming Foam (AFFF) Testing at Certificated Part 139 Airports. No. 19-02.29 October.
- Geosyntec Consultants, Inc. (Geosyntec). 2017. Final Human Health Risk Assessment, Hollywood Burbank Airport Replacement Passenger Terminal. 21 December.
- Geosyntec. 2019a. Per- and Polyfluoroalkyl Substances (PFAS) Investigation Work Plan, Hollywood Burbank Airport. 11 June.
- Geosyntec. 2019b. Per- and Polyfluoroalkyl Substances (PFAS) Groundwater Investigation Sampling Work Plan, Hollywood Burbank Airport. 27 November.
- Geosyntec. 2020. Per- and Polyfluoroalkyl Substances (PFAS) Soils Investigation Report, Hollywood Burbank Airport. 6 February.
- Los Angeles Regional Water Quality Control Board (LARWQCB). 2019a. Water Code Section 13267 Order WQ 2019-0005-DWQ for the Determination of the Presence of Per- and Polyfluoroalkyl Substances at Bob Hope, Airport ID BUR, Los Angeles County, T10000012771. 20 March.
- LARWQCB. 2019b. Approval of Per- and Polyfluoroalkyl Substances Investigation Work Plan. 20 August.

- LARWQCB. 2020. Approval of Per- and Polyfluoroalkyl Substances (PFAS) Groundwater Sampling Work Plan, Bob Hope Airport, T10000012771. 20 April.
- Moody, C.A., Hebert, G.N., Strauss, S.H., Field, J.A., 2003. Occurrence and persistence of perfluorooctanesulfonate and other perfluorinated surfactants in groundwater at a fire-training area at Wurtsmith Air Force Base, Michigan, USA. J. Environ. Monit. JEM 5 (2), 341.
- RS&H. 2016. Environmental Impact Report for A Replacement Airline Passenger Terminal at Burbank Bob Hope Airport. June.
- Tetra Tech. 2017. Annual Groundwater Monitoring Report, Second Quarter 2017, Burbank Operable Unit, Burbank, California. 31 August.

TABLES

TABLE 12019 and 2020 Soil Investigation ResultsHollywood Burbank AirportPage 1 of 3

Location	Sample Date	Depth (ft bgs)	4:2 Fluorotelomersulfonic acid (FTS)	6:2 FTS	8:2 FTS	N-ethylperfluorooctanesulfonamido-acetic acid (NEtFOSAA)	Perfluorobutanesulfonic acid (PFBS)	Perfluorobutanoic acid (PFBA)	Perfluorodecanoic acid (PFDA)	Perfluoroheptanesulfonic Acid (PFHpS)	Perfluoroheptanoic acid (PFHpA)	Perfluorohexanesulfonic acid (PFHxS)	Perfluorohexanoic acid (PFHxA)	Perfluorononanoic acid (PFNA)	Perfluorooctanesulfonic acid (PFOS)	Perfluorooctanoic acid (PFOA)	Perfluoropentanesulfonic acid (PFPeS)	Perfluoropentanoic acid (PFPeA)
		1	< 2.1	390	4.4	2.9 J-	< 2.1	14	< 0.62	< 0.62	34	13	77	< 0.62	17	6.4	< 3.1	96
		5	< 1.9	< 1.9	< 2.9	< 1.9 UJ	< 1.9	< 1.9	< 0.57	< 0.57	< 0.57	< 0.57	< 0.57	< 0.57	< 0.57	< 0.57	< 2.9	< 0.57
		10	< 2.1	< 2.1	< 3.2	< 2.1	< 2.1	< 2.1	< 0.63	< 0.63	0.95	0.82	9.9	< 0.63	< 0.63	< 0.63	< 3.2	13
		15	< 2.0	< 2.0	< 3.0	< 2.0	< 2.0	< 2.0	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 3.0	< 0.60
SB-1	12/10/2019	20	< 2.1	< 2.1	< 3.2	< 2.1	< 2.1	< 2.1	< 0.64	< 0.64	< 0.64	< 0.64	< 0.64	< 0.64	< 0.64	< 0.64	< 3.2	< 0.64
3D-1	12/10/2019	25	< 2.1	< 2.1	< 3.2	< 2.1	< 2.1	< 2.1	< 0.64	< 0.64	< 0.64	< 0.64	< 0.64	< 0.64	< 0.64	< 0.64	< 3.2	< 0.64
		25 (Duplicate)	< 2.0	< 2.0	< 3.0	< 2.0	< 2.0	< 2.0	< 0.61	< 0.61	< 0.61	< 0.61	< 0.61	< 0.61	< 0.61	< 0.61	< 3.0	< 0.61
		30	< 2.0	< 2.0	< 3.0	< 2.0	< 2.0	< 2.0	< 0.59	< 0.59	< 0.59	< 0.59	< 0.59	< 0.59	< 0.59	< 0.59	< 3.0	< 0.59
		40	< 2.0	< 2.0	< 3.0	< 2.0	< 2.0	< 2.0	< 0.59	< 0.59	< 0.59	< 0.59	< 0.59	< 0.59	< 0.59	< 0.59	< 3.0	< 0.59
		50	< 2.4	< 2.4	< 3.6	< 2.4	< 2.4	< 2.4	< 0.72	< 0.72	< 0.72	< 0.72	< 0.72	< 0.72	< 0.72	< 0.72	< 3.6	< 0.72
		1	< 2.1	< 2.1	< 3.2	< 2.1	< 2.1	< 2.1	< 0.64	< 0.64	1.9	3.1	< 0.64	< 0.64	2.3	< 0.64	< 3.2	< 0.64
		5	< 2.0	< 2.0	< 3.1	< 2.0	< 2.0	< 2.0	< 0.61	< 0.61	< 0.61	< 0.61	1.2	< 0.61	< 0.61	< 0.61	< 3.1	1.3
		10	< 2.0	< 2.0	< 3.0	< 2.0	< 2.0	< 2.0	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 3.0	< 0.60
		15	< 1.9	< 1.9	< 2.9	< 1.9	< 1.9	< 1.9	< 0.58	< 0.58	< 0.58	< 0.58	< 0.58	< 0.58	< 0.58	< 0.58	< 2.9	< 0.58
		15 (Duplicate)	< 2.0	< 2.0	< 3.0	< 2.0	< 2.0	< 2.0	< 0.61	< 0.61	< 0.61	< 0.61	< 0.61	< 0.61	< 0.61	< 0.61	< 3.0	< 0.61
SB-2	12/10/2019	20	< 2.0	< 2.0	< 2.9	< 2.0	< 2.0	< 2.0	< 0.59	< 0.59	< 0.59	< 0.59	< 0.59	< 0.59	< 0.59	< 0.59	< 2.9	< 0.59
		25	< 2.0	< 2.0	< 3.1	< 2.0	< 2.0	< 2.0	< 0.61	< 0.61	< 0.61	< 0.61	< 0.61	< 0.61	< 0.61	< 0.61	< 3.1	< 0.61
		25 (Duplicate)	< 1.9	< 1.9	< 2.8	< 1.9	< 1.9	< 1.9	< 0.57	< 0.57	< 0.57	< 0.57	< 0.57	< 0.57	< 0.57	< 0.57	< 2.8	< 0.57
		30	< 1.9	< 1.9	< 2.8	< 1.9	< 1.9	< 1.9	< 0.57	< 0.57	< 0.57	< 0.57	< 0.57	< 0.57	< 0.57	< 0.57	< 2.8	< 0.57
		40 48	< 2.1 < 2.0	< 2.1 < 2.0	< 3.1 < 3.0	< 2.1 < 2.0	< 2.1 < 2.0	< 2.1 < 2.0	< 0.63 < 0.59	< 0.63 < 0.59	< 0.63 < 0.59	< 0.63 < 0.59	< 0.63 < 0.59	< 0.63 < 0.59	< 0.63 < 0.59	< 0.63 < 0.59	< 3.1 < 3.0	< 0.63 < 0.59
		1	< 2.1	160	< <u>5.0</u> 160	< 2.1	< 2.1	2.2 J	3.6	1.8	18 J	< 0.55 48 J	19	5	130	(0.5) 17 J	< 3.2	15
		5	< 2.0	240	< 2.9	< 2.0	< 2.0	< 2.0	< 0.59	< 0.59	4.6	3.4	2.6	< 0.59	< 0.59	7.1	< 2.9	3.6
		5 (Duplicate)	< 2.0	250	< 3.0	< 2.0	< 2.0	< 2.0	< 0.61	< 0.61	6.2	3.7	3.3	< 0.61	< 0.61	7.8	< 3.0	4.7
		10	< 2.0	250	< 3.0	< 2.0	< 2.0	2.4	< 0.60	< 0.60	6.8	3.3	5.4	< 0.60	< 0.60	7.2	< 3.0	7.3
		15	< 1.9	100	< 2.8	< 1.9	< 1.9	2.1	< 0.57	< 0.57	6.7	2.0	4.7	< 0.57	< 0.57	2.3	< 2.8	6.0
SB-3	12/11/2019	21	< 2.0	88	< 2.9	< 2.0	< 2.0	< 2.0	< 0.59	< 0.59	4.1	4.3	2.0	< 0.59	< 0.59	1.9	< 2.9	2.4
		25	< 1.9	63	< 2.8	< 1.9	< 1.9	< 1.9	< 0.56	< 0.56	2.8	1.9	1.7	< 0.56	< 0.56	0.99	< 2.8	1.8
		25 (Duplicate)	< 2.0	77	< 2.9	< 2.0	< 2.0	< 2.0	< 0.59	< 0.59	3.8	2.5	2.1	< 0.59	< 0.59	1.2	< 2.9	2.1
		<u> </u>	< 2.0 < 1.9	47 32	< 3.0 < 2.9	< 2.0 < 1.9	< 2.0 < 1.9	< 2.0 < 1.9	< 0.59 < 0.57	< 0.59 < 0.57	3.2 2.1	2.3 < 0.57	2.2 2.4	< 0.59 < 0.57	< 0.59 < 0.57	< 0.59 < 0.57	< 3.0 < 2.9	2.2 2.8
		40	< 2.0	<u> </u>	< 3.0	< 2.0	< 1.9	< 2.0	< 0.60	< 0.60	2.1	< 0.60	4.5	< 0.60	< 0.60	< 0.60	< 3.0	4.1
		.0	~ 2.0	50	< J.U	~ 2.0	~ 2.0	N 2.0	< 0.00	< 0.00	<i>4</i> .0	< 0.00	4. J	< 0.00	< 0.00	< 0.00	< J.U	7.1

TABLE 12019 and 2020 Soil Investigation ResultsHollywood Burbank AirportPage 2 of 3

Location	Sample Date	Depth (ft bgs)	4:2 Fluorotelomersulfonic acid (FTS)	6:2 FTS	8:2 FTS	N-ethylperfluorooctanesulfonamido-acetic acid (NEtFOSAA)	Perfluorobutanesulfonic acid (PFBS)	Perfluorobutanoic acid (PFBA)	Perfluorodecanoic acid (PFDA)	Perfluoroheptanesulfonic Acid (PFHpS)	Perfluoroheptanoic acid (PFHpA)	Perfluorohexanesulfonic acid (PFHxS)	Perfluorohexanoic acid (PFHxA)	Perfluorononanoic acid (PFNA)	Perfluorooctanesulfonic acid (PFOS)	Perfluorooctanoic acid (PFOA)	Perfluoropentanesulfonic acid (PFPeS)	Perfluoropentanoic acid (PFPeA)
		1	< 2.2	< 2.2	< 3.3	< 2.2	< 2.2	< 2.2	< 0.66	< 0.66	< 0.66	< 0.66	< 0.66	< 0.66	< 0.66	< 0.66	< 3.3	< 0.66
		5	< 2.1	< 2.1	< 3.1	< 2.1	< 2.1	< 2.1	< 0.63	< 0.63	< 0.63	< 0.63	< 0.63	< 0.63	1.7	< 0.63	< 3.1	< 0.63
		10 15	< 2.1 < 2.2	< 2.1 < 2.2	< 3.2 < 3.2	< 2.1 < 2.2	< 2.1 < 2.2	< 2.1 < 2.2	< 0.64 < 0.65	< 0.64 < 0.65	< 0.64 < 0.65	< 0.64 < 0.65	< 0.64 < 0.65	< 0.64 < 0.65	0.69 0.79	< 0.64	< 3.2 < 3.2	< 0.64
SB-4	12/9/2019	20	< 2.2	< 2.2	< 3.2	< 2.2	< 2.2	< 2.2	< 0.63	< 0.63	< 0.63	< 0.63	< 0.63	< 0.63	< 0.63	< 0.65 < 0.63	< 3.2	< 0.65 < 0.63
5D-4	12/9/2019	25	< 2.0	< 2.0	< 3.0	< 2.0	< 2.0	< 2.0	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 3.0	< 0.60
		30	< 2.0	< 2.0	< 3.0	< 2.0	< 2.0	< 2.0	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 3.0	< 0.60
		40	< 2.0	< 2.0	< 3.0	< 2.0	< 2.0	< 2.0	< 0.59	< 0.59	< 0.59	< 0.59	< 0.59	< 0.59	< 0.59	< 0.59	< 3.0	< 0.59
		50	< 2.0	< 2.0	< 3.0	< 2.0	< 2.0	< 2.0	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 3.0	< 0.60
		1	< 2.1	12	15.0	< 2.1	< 2.1	2.9	< 0.63	< 0.63	3.9	4.3	8.0	0.71	4.9	2.2	< 3.1	15
		5	< 2.0	< 2.0	< 3.0	< 2.0	< 2.0	< 2.0	< 0.61	< 0.61	2.2	0.96	4.7	< 0.61	0.75	< 0.61	< 3.0	5.9
		10	< 2.0	< 2.0	< 3.0	< 2.0	3	5.9	< 0.59	< 0.59	12	2.3	38	< 0.59	< 0.59	< 0.59	3.9	35
		15 15 (D 1) ()	< 2.1	15 J	< 3.1	< 2.1	4 J	8.2 J	< 0.62	< 0.62	5.9 J	2.1 J	25	< 0.62	< 0.62	< 0.62	< 3.1	38
SB-5	12/9/2019	15 (Duplicate) 20	< 1.9	26 J 4.5	< 2.8	< 1.9	2.5 J 3.7	5.3 J	< 0.57	< 0.57 < 0.61	11 J 2	4.7 J	24 14	< 0.57	< 0.57 < 0.61	1.3	< 2.8	29 23
		25	< 2.0 3	4.5 25	< 3.0 < 2.9	< 2.0 < 1.9	23	<u>6.4</u> 14	< 0.61 < 0.58	< 0.61	7.1	< 0.61 3.5	<u> </u>	< 0.61 < 0.58	< 0.61	< 0.61 1.1	< 3.0 4.7	<u> </u>
		30	< 1.9	< 1.9	< 2.9	< 1.9	6.6	7.0	< 0.58	< 0.57	1.9	< 0.57	21	< 0.57	< 0.50	< 0.57	< 2.8	26
		40	< 2.1	< 2.1	< 3.1	< 2.1	< 2.1	3.0	< 0.62	< 0.62	1.4	< 0.62	13	< 0.62	< 0.62	< 0.62	< 3.1	16
		44	< 2.0	< 2.0	< 3.0	< 2.0	< 2.0	< 2.0	< 0.60	< 0.60	< 0.60	< 0.60	4.7	< 0.60	< 0.60	< 0.60	< 3.0	6.7
	9/8/2020	60	< 2.0	< 2.0	< 3.0	< 2.0	< 2.0	< 2.0	< 0.61	< 0.61	1.1	< 0.61	3.9	< 0.61	< 0.61	< 0.61	< 3.0	2.7
	9/8/2020	70	< 2.0 UJ	< 2.1 UJ	< 3.1 UJ		< 2.1 UJ	< 2.1 UJ	< 0.62 UJ	< 0.62 UJ	1.5 J	< 0.62 UJ	6.3 J	< 0.62 UJ	< 0.62 UJ	< 0.62 UJ	< 3.1 UJ	6.1 J
		80	< 2.0	< 2.1	< 3.1	< 2.1	< 2.1	< 2.1	< 0.62	< 0.62	2.8	< 0.62	6.4	< 0.62	< 0.62	< 0.62	< 3.1	7.4
		80 (duplicate)	< 2.0	< 2.0	< 3.0	< 2.0	< 2.0	< 2.0	< 0.61	< 0.61	2.8	< 0.61	7.2	< 0.61	< 0.61	< 0.61	< 3.0	7.7
	0/0/2020	90	< 2.0	< 2.0	< 3.0	< 2.0	< 2.0	< 2.0	< 0.60	< 0.60	1.1	< 0.60	3.0	< 0.60	< 0.60	< 0.60	< 3.0	2.6
SB-5A	9/9/2020	100 110	< 2.0 < 2.0	< 2.0 < 2.0	< 3.0	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 0.61 < 0.60	< 0.61 < 0.60	1.2 < 0.60	< 0.61 < 0.60	5.5 2.8	< 0.61 < 0.60	< 0.61 < 0.60	< 0.61 < 0.60	< 3.0 < 3.0	3.3 3.7
		120	< 2.0	< 2.0	< 3.0	< 2.0	< 2.0	< 2.0	< 0.60	< 0.60	< 0.60	< 0.60	2.3	< 0.60	< 0.60	< 0.60	< 3.0	2.9
		130	< 2.3	< 2.3	< 3.4	< 2.3	< 2.3	< 2.3	< 0.69	< 0.69	< 0.69	< 0.69	< 0.69	< 0.69	< 0.69	< 0.69	< 3.4	< 0.69
		140	< 2.0	< 2.0	<2.0	< 2.0	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.49	< 0.20	< 0.20	< 0.20
	9/10/2020	150	< 2.0	< 2.0	<2.0	< 2.0	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.51	< 0.20	< 0.20	< 0.20
		160	< 1.9	< 1.9	< 1.9	< 1.9	< 0.19	< 0.19	< 0.19	< 0.19	< 0.19	< 0.19	< 0.19	< 0.19	< 0.48	< 0.19	< 0.19	< 0.19

TABLE 12019 and 2020 Soil Investigation ResultsHollywood Burbank AirportPage 3 of 3

Location	Sample Date	Depth (ft bgs)	4:2 Fluorotelomersulfonic acid (FTS)	6:2 FTS	8:2 FTS	N-ethylperfluorooctanesulfonamido-acetic acid (NEtFOSAA)	Perfluorobutanesulfonic acid (PFBS)	Perfluorobutanoic acid (PFBA)	Perfluorodecanoic acid (PFDA)	Perfluoroheptanesulfonic Acid (PFHpS)	Perfluoroheptanoic acid (PFHpA)	Perfluorohexanesulfonic acid (PFHxS)	Perfluorohexanoic acid (PFHxA)	Perfluorononanoic acid (PFNA)	Perfluorooctanesulfonic acid (PFOS)	Perfluorooctanoic acid (PFOA)	Perfluoropentanesulfonic acid (PFPeS)	Perfluoropentanoic acid (PFPeA)
		1	< 2.2	< 2.2	< 3.3	< 2.2	< 2.2	< 2.2	< 0.67	< 0.67	< 0.67	3.3	< 0.67	< 0.67	< 0.67	2.5	< 3.3	< 0.67
		5	< 2.0	< 2.0	< 3.0	< 2.0	< 2.0	< 2.0	< 0.61	< 0.61	< 0.61	< 0.61	< 0.61	< 0.61	< 0.61	< 0.61	< 3.0	< 0.61
		10	< 1.9	< 1.9	< 2.9	< 1.9	< 1.9	< 1.9	< 0.58	< 0.58	< 0.58	< 0.58	< 0.58	< 0.58	< 0.58	< 0.58	< 2.9	< 0.58
SB-6	12/12/2019	15	< 2.1	< 2.1	< 3.1	< 2.1	< 2.1	< 2.1	< 0.63	< 0.63	< 0.63	< 0.63	1.5	< 0.63	< 0.63	< 0.63	< 3.1	0.75
30-0	12/12/2019	20	< 2.0	< 2.0	< 3.0	< 2.0	< 2.0	< 2.0	< 0.59	< 0.59	< 0.59	< 0.59	< 0.59	< 0.59	< 0.59	< 0.59	< 3.0	< 0.59
		25	< 2.1	< 2.1	< 3.1	< 2.1	< 2.1	< 2.1	< 0.62	< 0.62	< 0.62	< 0.62	< 0.62	< 0.62	< 0.62	< 0.62	< 3.1	< 0.62
		30	< 1.9	< 1.9	< 2.9	< 1.9	< 1.9	< 1.9	< 0.58	< 0.58	< 0.58	< 0.58	< 0.58	< 0.58	< 0.58	< 0.58	< 2.9	< 0.58
		36	< 2.0	< 2.0	< 3.0	< 2.0	< 2.0	< 2.0	< 0.61	< 0.61	< 0.61	< 0.61	< 0.61	< 0.61	< 0.61	< 0.61	< 3.0	< 0.61
		1	< 2.1	< 2.1	< 3.1	< 2.1	< 2.1	< 2.1	< 0.63	< 0.63	< 0.63	1.3	< 0.63	< 0.63	7.3	< 0.63	< 3.1	0.67 J
		1 (Duplicate)	< 2.0	< 2.0	< 3.1	< 2.0	< 2.0	< 2.0	< 0.61	< 0.61	< 0.61	1.2	< 0.61	< 0.61	7.1	< 0.61	< 3.1	< 0.61 UJ
		5	< 2.0	< 2.0	< 3.0	< 2.0	< 2.0	< 2.0	< 0.60	< 0.60	< 0.60	15	< 0.60	< 0.60	< 0.60	4.2	< 3.0	0.78
		10	< 2.0	< 2.0	< 3.0	< 2.0	< 2.0	< 2.0	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 3.0	< 0.60
		15	< 2.0	< 2.0	< 3.0	< 2.0	< 2.0	< 2.0	< 0.59	< 0.59	< 0.59	0.78 J	< 0.59	< 0.59	< 0.59	< 0.59	< 3.0	< 0.59
SB-7	12/11/2019	15 (Duplicate)	< 2.0	< 2.0	< 3.0	< 2.0	< 2.0	< 2.0	< 0.59	< 0.59	< 0.59	< 0.59 UJ	< 0.59	< 0.59	< 0.59	< 0.59	< 3.0	< 0.59
		20	< 2.0	< 2.0	< 3.0	< 2.0	< 2.0	< 2.0	< 0.59	< 0.59	< 0.59	< 0.59	< 0.59	< 0.59	< 0.59	< 0.59	< 3.0	< 0.59
		25	< 1.9	< 1.9	< 2.9	< 1.9	< 1.9	< 1.9	< 0.58	< 0.58	< 0.58	0.95	< 0.58	< 0.58	< 0.58	< 0.58	< 2.9	< 0.58
		30	< 2.2	< 2.2	< 3.2	< 2.2	< 2.2	< 2.2	< 0.65	< 0.65	< 0.65	1.7	< 0.65	< 0.65	< 0.65	< 0.65	< 3.2	< 0.65
		40	< 2.0	< 2.0	< 3.0	< 2.0	< 2.0	< 2.0	< 0.60	< 0.60	< 0.60	1.7	< 0.60	< 0.60	1.4	0.63	< 3.0	< 0.60
		50	< 2.2	< 2.2	< 3.3	< 2.2	< 2.2	< 2.2	< 0.66	< 0.66	< 0.66	< 0.66	< 0.66	< 0.66	< 0.66	< 0.66	< 3.3	< 0.66

Notes:

1. Per- and Polyfluoroalkyl Substances (PFAS) were analyzed using Modified USEPA Method 537.

2. Non-Detects (ND) are reported as less than (<) the laboratory reporting limit (RL).

3. Units are in nanogram per gram (ng/g).

4. Results for PFAS compounds with detections above RL are presented herein.

5. ft bgs = feet below ground surface.

6. The values reported herein are validated and appropriate qualifiers are applied as described below:

J = estimated result.

J- = the result is considered estimated with a low bias.

UJ = the non-detect result was considered estimated less than the RL.

TABLE 2Groundwater Monitoring Well DetailsHollywood Burbank AirportPage 1 of 1

Well ID	Longitude	Latitude	Screen Interval (ft bgs)	Well Casing Elevation (ft MSL)	Measured Groundwater Depth, Sep 2020 (ft btoc)	Groundwater Elevation, Sep 2020 (ft MSL)
A-1-CW03R	-118.3477984	34.19599564	245 - 285	685.09	219.02	466.07
A-1-CW09	-118.3492954	34.19165819	187 - 227	673.8	207.79	466.01
B-6-CW10	-118.3537748	34.19943291	203 - 253	710.11	233.82	476.29
C-1-CW03	-118.3673061	34.20169313	259 - 280	740.39	253.17	487.22
C-1-CW06	-118.3700434	34.19644946	232 - 252	720.91	235.07	485.84
C-1-CW08	-118.3640485	34.19983052	245 - 285	731.31	246.91	484.4

Notes:

1. Well construction details are courtesy of the Annual Groundwater Monitoring Report, Second Quarter 2019, Burbank Operable Unit dated September 2019 (Tetra Tech, 2019).

2. ft bgs = feet below ground surface

3. MSL = Mean Sea Level

4. btoc = below top of casing $\frac{1}{2}$

TABLE 3Groundwater Investigation ResultsHollywood Burbank AirportPage 1 of 1

					Wa	ter Chemi	stry									PF	AS					
Location	Sample Date	Chloride	Nitrate as nitrogen	Sulfate	Calcium	Magnesium	Potassium	Sodium	Alkalinity and Bicarbonate (as CaCO3)	Total Dissolved Solids (TDS)	Perfluorobutanoic acid (PFBA)	Perfluoropentanoic acid (PFPeA)	Perfluorohexanoic acid (PFHxA)	Perfluoroheptanoic acid (PFHpA)	Perfluorooctanoic acid (PFOA)	Perfluorononanoic acid (PFNA)	Perfluorodecanoic acid (PFDA)	Perfluorobutanesulfonic acid (PFBS)	Perfluoropentanesulfonic acid (PFPeS)	Perflurohexanesulfanoic acid (PFHxS)	Perfluorooctanesulfonic acid (PFOS)	Perfluorooctanesulfonamide (FOSA)
A-1-CW03R	9/16/2020	43 F1	0.15	21	38.8	11.7	6.32	26.5	135	325	40	86	120	13	7.4	1.8	3.3	20	10	11	15	2.4
A-1-CW09	9/16/2020	93	27	84	139	34.9	5.77	37.9	273	875	8.9	15	21	2.8	2.8	<1.8	<1.8	7.1	2.3	7.4	3.4	1.8
A-1-CW09 (duplicate)	9/16/2020	93	27	84	139	34.9	5.77	37.9	273	875	9.3	15	21	2.6	3.0	<1.8	<1.8	7.4	2.2	5.8	3.3	2.1
B-6-CW10	9/17/2020	41	5.6	67	91.9	23.9	5.25	31.3	263	480 H	310	670	670	210	170	< 17	< 17	73	120	390	< 17	< 17
C-1-CW03	9/17/2020	55	14	77	98.8	25.1	5.41	31.2	238	530 H	< 4.1	2.6	1.9	< 1.7	< 1.7	< 1.7	< 1.7	3.0	1.7	< 1.7	1.9	< 1.7
C-1-CW06	9/17/2020	22	11	43	96.3	22.3	4.94	29.2	282	450 H	5.4	< 1.7	< 1.7	< 1.7	< 1.7	< 1.7	< 1.7	1.9	< 1.7	3.6	< 1.7	3.1
C-1-CW08	9/17/2020	49	10	77	101	25.2	5.33	32.3	265	490 H	7.6	6.1	4.6	< 1.7	2.6	< 1.7	< 3.0	3.0	< 1.7	2.4	4.4	< 1.7

Notes:

1. Per- and Polyfluoroalkyl Substances (PFAS) were analyzed using Modified USEPA Method 537.

2. Non-Detects (ND) are reported as less than (<) the laboratory reporting limit (RL).

3. Water Chemistry units are in milligram/liter (mg/l). PFAS units are in nanogram per liter (ng/L).

4. Results for PFAS compounds with detections above RL are presented herein.

5. The PFAS results reported herein are validated and qualifiers are applied as appropriate.

6. Laboratory applied qualifiers for water chemistry parameters are shown in this table:

F1 = MS and/or MSD recovery exceeds control limits.

H = Sample was prepped or analyzed beyond the specific holding time

TABLE 4 QA/QC Field Blank Results Hollywood Burbank Airport Page 1 of 1

Analyte		Equ	ipment Blank	(EB)			Fie	eld Blank (FE	8)	
Analyte	9/8/2020	9/9/2020	9/10/2020	9/16/2020	9/17/2020	9/8/2020	9/9/2020	9/10/2020	9/16/2020	9/17/2020
Perfluoropentanoic acid (PFPeA)	2.0	< 1.6	< 1.8	< 1.8	< 1.7	9.3	< 1.6	< 1.8	< 1.8	< 1.6
Perfluorohexanoic acid (PFHxA)	2.9	< 1.6	< 1.8	< 1.8	< 1.7	31	< 1.6	< 1.8	< 1.8	< 1.6
Perfluoroheptanoic acid (PFHpA)	< 1.6	< 1.6	< 1.8	< 1.8	< 1.7	6.0	< 1.6	< 1.8	< 1.8	< 1.6
Perfluorooctanoic acid (PFOA)	< 1.6	< 1.6	< 1.8	< 1.8	< 1.7	240	< 1.6	< 1.8	< 1.8	< 1.6

Notes:

1. Per- and Polyfluoroalkyl Substances (PFAS) were analyzed using modified USEPA Method 537.

2. Non-Detects (ND) are reported as less than (<) the laboratory reporting limit (RL).

3. Units are in nanogram per liter (ng/L).

TABLE 5 QA/QC MS/MSD Results Hollywood Burbank Airport Page 1 of 1

				-5A-70						A-150						CW03R			
Anglete			12/	10/2019					12/10)/2019	-				12/1	1/2019			RPD
Analyte	MS	MS %	MSD	MSD %	MS/MSD	RPD	MS	MS %	MSD	MSD %	MS/MSD	RPD	MS	MS %	MSD	MSD %	MS/MSD	RPD	Limit
	IVIS	Rec	WISD	Rec	Limits	ND	IVIS	Rec	MBD	Rec	Limits	ΠD	IVIS	Rec	MBD	Rec	Limits	KI D	1 1
4:2 FTS	23.7	102	10.9	47	50-138	74	ND	87	ND	91	68-143	6	34.5	98	34.4	93	79-139	3	30
6:2 FTS	23.2	98	10.7	45	51-141	74	ND	91	ND	97	73-139	7	35.5	94	35.0	89	59-175	3	30
8:2 FTS	26.1	109	10.4	43	45-153	86	ND	98	ND	101	75-135	4	39.2	114	35.3	104	75-135	7	30
N-ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA)	29.5	118	13.5	54	45-150	74	ND	98	ND	98	72-132	1	34.3	95	36.9	108	76-136	15	30
N-methylperfluorooctanesulfonamidoacetic acid (NMeFOSAA)	27.9	112	11.9	48	47-159	80	2.07	106	2.20	112	72-132	6	38.7	108	36.9	108	76-136	3	30
Perfluorobutanesulfonic acid (PFBS)	24.8	107	11.0	44	63-138	77	1.70	99	1.79	103	69-129	5	57.6	120	59.8	123	< 3.0	4	30
Perfluorobutanoic acid (PFBA)	24.4	92	11.3	39	46-196	73	2.13	106	2.11	105	76-136	1	83.2	120	81.4	112	76-136	2	30
Perfluorodecanesulfonic acid (PFDS)	24.6	103	10.7	45	60-143	79	1.96	104	1.96	104	71-131	0	31.8	92	31.8	90	71-131	0	30
lyfluoroalkyl Substances (PFAS) were analyzed using Modified USEPA	24.9	100	11.1	45	59-138	77	1.98	101	1.99	102	72-132	1	38.9	99	42.6	107	76-136	9	30
Perfluorododecanoic acid (PFDoA)	26.7	107	12.4	50	56-146	73	2.12	109	1.93	98	71-131	9	37.6	103	40.8	108	71-131	8	30
Perfluoroheptanesulfonic Acid (PFHpS)	24.2	102	10.6	45	70-132	78	1.91	103	1.93	103	76-136	1	35.8	105	37.9	108	76-136	6	30
Perfluoroheptanoic acid (PFHpA)	28.4	108	14.3	51	58-159	66	1.89	97	1.91	97	71-131	1	51.8	108	50.4	102	72-132	3	30
Perfluorohexanesulfonic acid (PFHxS)	24.7	104	10.8	45	57-138	78	1.66	93	1.69	94	62-122	2	44.7	102	46.0	103	59-119	3	30
Perfluorohexanoic acid (PFHxA)	31.4	101	16.3	40	57-144	63	1.98	101	1.93	98	71-131	3	151	90	167	132	73-133	10	30
Perfluorononanoic acid (PFNA)	27.6	111	12.4	50	62-146	76	1.89	97	2.08	106	73-133	10	38.9	103	38.5	100	75-135	1	30
Perfluorooctanesulfonamide (FOSA)	23.7	95	11.0	44	44-146	73	1.97	101	2.08	106	77-137	5	44.0	116	46.2	119	73-133	5	30
Perfluorooctanesulfonic acid (PFOS)	22.4	94	9.6	40	54-131	80	2.00	110	1.95	107	68-141	3	46.1	92	49.0	98	70-130	6	30
Perfluorooctanoic acid (PFOA)	24.8	100	11.1	44	59-136	77	1.88	96	1.93	98	72-132	3	43.0	99	44.7	101	70-130	4	30
Perfluoropentanesulfonic acid (PFPeS)	24.9	104	11.7	48	63-149	72	1.90	104	1.81	98	66-126	5	50.6	120	51.0	117	66-126	1	30
Perfluoropentanoic acid (PFPeA)	26.7	83	13.7	30	65-144	64	1.87	96	1.87	95	69-129	0	119	92	115	79	71-131	3	30
Perfluorotetradecanoic acid (PFTeA)	25.5	102	11.3	45	61-149	77	1.84	94	1.83	93	67-127	1	35.2	98	33.4	90	70-130	5	30
Perfluorotridecanoic acid (PFTriA)	26.7	107	12.5	50	60-151	72	2.00	102	1.97	100	71-131	2	33.0	92	35.2	96	71-131	7	30
Perfluoroundecanoic acid (PFUnA)	25.9	104	11.3	45	56-144	79	1.95	100	2.07	105	66-126	6	40.9	111	39.2	103	68-128	4	30

Notes:

1. Per- and Polyfluoroalkyl Substances (PFAS) were analyzed using Modified USEPA Method 537.

2. Non-Detects (ND) are reported as less than (<) the laboratory reporting limit (RL).

3. Units are in nanogram per gram (ng/g).

4. ft bgs = feet below ground surface

5. MS = matrix spike

6. MSD = matrix spike duplicate

7. RPD = relative percent difference

TABLE 6BOU Extraction Well PFAS DataHollywood Burbank AirportPage 1 of 1

						PFAS				
Location	Sample Date	Perfluorobutanoic acid (PFBA)	Perfluoropentanoic acid (PFPeA)	Perfluorohexanoic acid (PFHxA)	Perfluoroheptanoic acid (PFHpA)	Perfluorooctanoic acid (PFOA)	Perfluorobutanesulfonic acid (PFBS)	Perfluoropentanesulfonic acid (PFPeS)	Perflurohexanesulfanoic acid (PFHxS)	Perfluorooctanesulfonic acid (PFOS)
	Nov-17	8.88	14.0	9.62	< 2	< 2	2.42	< 2	4.80	< 2
VO-1	May-19			69	9.4	< 10	10		20	< 10
	May-20			11	2.2	< 2	2.7		4.6	< 2
	Nov-17	< 5	4.83	3.17	< 2	< 2	< 2	< 2	< 2	< 2
VO-2	May-19			< 10	< 10	< 10	< 10		< 10	< 10
	May-20			3.6	< 2	< 2	< 2		< 2	< 2
	Nov-17	< 5	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
VO-3	May-19			15	< 10	< 10	< 10		< 10	< 10
	May-20			14	6.9	3.5	< 2		11	< 2
	Nov-17	6.18	20.1	12.0	2.28	< 2	2.13	< 2	8.22	< 2
VO-4	May-19	-		12	< 10	< 10	< 10	-	11	< 10
	Jan-20			11	2.8	< 2	< 2		11	< 2
	Nov-17	9.32	22.2	32.1	5.69	3.37	5.88	3.2	18.0	< 2
VO-5	May-19			73	< 10	< 10	< 10		22	< 10
	May-20			24	3.4	2.7	5		9.4	2.2
	Nov-17	11.6	12.1	16.3	3.03	3.06	3.76	< 2	8.15	4.6
VO-6	May-19			12	< 10	< 10	< 10		14	< 10
	May-20			8.3	3.7	5	2.3		17	1.7
	Nov-17	12.1	7.61	7.2	2.57	3.41	3.01	< 2	6.96	5.57
VO-7	May-19			< 10	< 10	< 10	< 10		< 10	< 10
	Jun-20			5.2	2	3.3	2		5.8	7.2
	Nov-17	< 5	2.36	2.39	< 2	< 2	< 2	< 2	2.50	2.41
VO-8	May-19			< 10	< 10	< 10	< 10		< 10	< 10
	May-20			14	< 2	< 2	7.5		11	2

Notes:

1. Data sourced from the Burbank Operable Unit database:

https://sdwis.waterboards.ca.gov/PDWW/JSP/MonitoringResults.jsp?tinwsys_is_number=2608&tinwsys_st_code=CA&counter=0 2. Units are in nanogram per liter (ng/L).

3. -- Indicates compound was not analyzed during that sampling period.

FIGURES

APPENDIX A LACDPH Permit

ENVIRONMENTAL HEALTH

Drinking Water Program

5050 Commerce Drive, Baldwin Park, CA 91706

Telephone: (626) 430-5420 • http://publichealth.lacounty.gov/eh/ep/dw/dw_main.htm

Work Plan Approval

WORK SITE ADDRESS	CITY	ZIP	EMAIL ADDRESS
BUR PFAS Investigation / WR2693 7617 Arvilla Ave	Burbank	91505	mdesai@geosyntec.com

NOTICE:

- WORK PLAN APPROVALS ARE VALID FOR 180 DAYS. 30 DAY EXTENSIONS OF WORK PLAN APPROVALS ARE CONSIDERED ON AN INDIVIDUAL (CASE-BY-CASE) BASIS AND MAY BE SUBJECT TO ADDITIONAL PLAN REVIEW FEES (HOURLY RATE AS APPLICABLE).
- WORK PLAN MODIFICATIONS MAY BE REQUIRED IF WELL AND GEOLOGIC CONDITIONS ENCOUNTERED AT THE SITE INSPECTION ARE FOUND TO DIFFER FROM THE SCOPE OF WORK PRESENTED TO THE DEPARTMENT OF PUBLIC HEALTH—DRINKING WATER PROGRAM.
- WORK PLAN APPROVALS ARE LIMITED TO COMPLIANCE WITH THE CALIFORNIA WELL STANDARDS AND THE LOS ANGELES COUNTY CODE AND DOES NOT GRANT ANY RIGHTS TO CONSTRUCT, RENOVATE, OR DECOMMISSION ANY WELL. THE APPLICANT IS RESPONSIBLE FOR SECURING ALL OTHER NECESSARY PERMITS SUCH AS WATER RIGHTS, PROPERTY RIGHTS, COASTAL COMMISSION APPROVALS, USE COVENANTS, ENCROACHMENT PERMISSIONS, UTILITY LINE SETBACKS, CITY/COUNTY PUBLIC WORKS RIGHTS OF WAY, ETC.
- THIS PERMIT IS NOT COMPLETE UNTIL ALL OF THE FOLLOWING REQUIREMENTS ARE SIGNED BY THE DEPUTY HEALTH OFFICER. WORK SHALL NOT BE INITIATED WITHOUT A WORK PLAN APPROVAL STAMPED BY THE DEPARTMENT OF PUBLIC HEALTH—DRINKING WATER PROGRAM.

TO BE COMPLETED BY DEPARTMENT OF PUBLIC HEALTH-DRINKING WATER PROGRAM:

X	WORK PLAN APPROVED FOR: 1 soil boring	PERMIT NUMBER:	SR0231904	DATE:	August 26, 2020
---	--	-------------------	-----------	-------	-----------------

ADDITIONAL APPROVAL CONDITIONS:

- Work plan approval is issued for scope of work submitted to the Drinking Water Program. Any modifications to the scope of work will require additional work plan review.
- Soil borings shall be sealed pursuant to Section 9 and Appendix B of *California Well Standards Bulletins* 74-90 & *Bulletins* 74-81 respectively.
 - For Portland cement, it shall be mixed at a ratio of one 94-pound sack of Portland cement 5 to 6 gallons of 'clean' water.
 - **Up to 6%** of bentonite may be added to the cement mixture at a ratio of two (2) pounds of bentonite one (1) gallon of 'clean' water, or in accordance with the manufacturer's specification.
 - No hydrated bentonite permitted.
- Sealing materials shall be applied under pressure from the bottom of the well or boring proceeding upward in one continuous operation via a tremie pipe or equivalent - to prevent freefall, jamming or "bridging", voids, dilution of sealing materials, and/or prevent separation of aggregate from sealants.
- Drill cuttings and wastewater shall be disposed of in accordance with all applicable federal, State, and local requirements.
- Sealing materials shall meet National Sanitation Foundation (NSF 61) standard.
- Provide temporary cover to the borehole opening whenever work is interrupted.
- Borings or exploration holes must comply with all applicable requirements published in the California Well Standards (Bulletins 74-81 and 74-90 combined) and the Los Angeles County Code, Title 11.

Quang Lv. REHS

APPENDIX B Boring Logs

PROJECT PFAS Investigation

PROJECT LOCATION Burbank, CA

PROJECT NUMBER WR2693

6/20

GDT

GEOSNTEC.

GPJ

SB-5A.

¥

ā

	CONSUN CONSUN SS FORM: L BORE 01/04	LEC Lants BOREHOI	Beach, 69-080 969-082	0 20	2648		DATE	Se Se CA estiga	B-5/ ep 8, 2 ep 11, tion	20		GRO	und of c	SHEET 1 OF 3 I DATA: SURF. (Ft) CASING (Ft)
DEPTH (ft-bgs)		7) Density/Consistency 8) Structure 9) Other (Mineralization,	GRAPHIC LOG	MELL LOG		JNDWATER OR RUCTURE	ELEVATION (ft)	SAMPLE NO.	ТҮРЕ	BLOW COUNT B	RECOVERY (%)	PID/FID (ppm)	TIME (00:00)	COMMENTS 1) Rig Behavior 2) Air Monitoring
- - - 50 - - - -	boring log SB-5. Poorly-graded S/ brown (10YR, 6/3	ND with SILT (SP-SM); pale 3); moist; fine to coarse sand; e fine and medium sand; (10,						-					1325	Few cobbles 4" in diameter.
55 - - - - - - 60 - -	brown (10YR, 5/2	GRAVEL (SM); yellowish 2); moist; fine to coarse sand; je fine sand; angular gravel up , 15)					-	SB-5A-60			100		1433	Few cobbles 4" in diameter; some pulverization. Few cobbles 4" in diameter.
- - 65 - - - -	yellowish brown coarse sand; ang 70, TR) Poorly-graded S/ yellowish brown coarse sand; hig	ND with GRAVEL (SW); (10YR, 5/4); moist; fine to gular gravel up to 3-inch; (30, AND with GRAVEL (SP); (10YR, 5/4); moist; fine to her percentage coarse sand; o to 3-inch; (30, 70, TR)						-10						Few cobbles 4" in diameter. Few cobbles 4" in diameter.
70	Poorly-graded S/ dark grayish brov coarse sand; hig angular gravel up Poorly-graded S/ moist; fine to coa coarse sand; (10	AND with GRAVEL (SP-SM); wn (10YR, 4/2); moist; fine to her percentage coarse sand; o to 3-inch; (5, 80, 15) AND (SP); brown (10YR, 5/3); irse sand; higher percentage						SB-5A-7			100		0741	Boring paused at 70 ft bgs on 9/8/2020. Resumed on 9/9/2020. Few cobbles 4" in diameter. Few cobbles 4" in diameter. High pulverization.
	(10YR, 5/2); mois percentage medi 3-inch; (20, 70, 1 Poorly-graded S/ brown (10YR, 5/3	st; fine to coarse sand; higher um sand; angular gravel up to [0]					-	SB-5A-80			100		0850	High pulverization at 83 ft bgs. Few cobbles 4" in
EQUIF DRILL DIAMI	brown (10YR, 4/3 higher percentag RACTOR CAS(MENT TSI1: . MTHD Sonic L/	50CC EAS	TITUDE STING 1 ORDINA STEM:	18°21'2 \TE	25" W	NOTES:		-						diameter. Many cobbles 4-7" in diameter; high pulverization.

	CODSU CODSU ESS FORM: L BORE 01/04	Ltec Itants BOREHOI	Beach, 969-080 969-082	0 20	648		DATE	Se Se CA estigat	3-5/ p 8, 2 p 11, ion	20		GROU	SHEET 2 OF 3 ON DATA: ND SURF. (Ft) F CASING (Ft) M
DEPTH (ft-bgs)		DESCRIPTION Mem. 6) Plasticity 7) Density/Consistency 8) Structure 9) Other (Mineralization, Size Discoloration, Odor, etc.)	GRAPHIC LOG	MELL LOG		JNDWATER OR RUCTURE	ELEVATION (ft)	SAMPLE NO.	ТҮРЕ		RECOVERY (%)	PID/FID (ppm)	COMMENTS 00 1) Rig Behavior 2) Air Monitoring
- - - 95 - - - -	grayish brown (sand; higher pe	0, 70, TR) SAND with GRAVEL (SP); (10YR, 5/2); moist; fine to coarse rcentage medium to coarse ravel up to 3-inch; (30, 65, 5)						100 SB-5A-90			100		 High pulverization from 90-91 ft bgs; mostly rock powder. Few cobbles 4-5" in diameter; high pulverization. Some soil collected in bucket, not in collection sleeve; high pulverization, especially at 97-98 ft bgs.
100 - - - - 105 - - - -	(10YR, 4/3) Poorly-graded brown (10YR, 5 higher percente gravel up to 3-ii Soil not capture	SAND with GRAVEL (SP); 5/3); moist; fine to coarse sand; nch; (45, 55, TR) d in bag; no recovery	NR					SB-5A-100			80	13 13 13	 High pulverization from 102.5-104 ft bgs; mostly rock powder. Few cobbles 4-5" in diameter. Few cobbles 4" in diameter.
- 110 - - - - 115 -	grayish brown (sand; higher pe angular gravel Brown (10YR, 4 Poorly-graded 5	SAND with GRAVEL (SP-SM); 10YR, 5/2); moist; fine to coarse prentage fine to medium sand; up to 3-inch; (15, 75, 10) 4/3) SAND with GRAVEL (SP-SM); 10YR, 5/2); moist; fine to coarse						SB-5A-110					Few cobbles 4-5" in diameter. High pulverization from 109.5-110 ft bgs and 111-115 ft bgs. High pulverization from 115-119 ft bgs.
- - 120 - - - -	sand; higher pe	arcentage coarse sand; angular nch; (20, 70, 10)						SB-5A-120			100	15	High pulverization from 120-125 ft bgs; mostly rock powder from 121.5-125 ft bgs.
125 - - - - 130 - -	grayish brown (sand; higher pe	SAND with GRAVEL (SP-SM); (10YR, 5/2); moist; fine to coarse ercentage coarse sand; angular nch; (15, 75, 10)						SB-5A-130				15	Few cobbles 4" in diameter; high pulverization.
EQUIF	RACTOR CAS	150CC EAS	TITUDE STING 1 ORDINA	18°21'2		NOTES:	-					08	Boring paused at 132.5 ft bgs on 9/9/2020. Resumed on 9/10/2020.
DIAMI			STEM:		CEG)	SEE KEY SHEET F	OR SYMI	BOLS	AND A	BBRE	/IATI	ONS	

07-WELL BORE BURBANK SB-5A.GPJ GEOSNTEC.GDT 11/6/20

	CODSU CODSU	2648	BORINGSB-5ASHEET3OF3START DRILL DATESep 8, 20ELEVATION DATA:FINISH DRILL DATESep 11, 20GROUND SURF. (Ft)LOCATIONBurbank, CATOP OF CASING (Ft)PROJECTPFAS InvestigationDATUMNUMBERWR2693					SURF. (Ft)						
DEPTH (ft-bgs)			GRAPHIC LOG	BOI GROU MEIT LOG MEIT STI		JNDWATER OR RUCTURE	ELEVATION (ft)	SAMPLE NO.	ТҮРЕ	BLOW COUNT WAS	RECOVERY (%)	PID/FID (ppm)	TIME (00:00)	COMMENTS 1) Rig Behavior 2) Air Monitoring
	dark ýellowish t coarse sand; hi angular gravel Poorly-graded s dark yellowish t coarse sand; hi	SAND with GRAVEL (SP-SM); brown (10YR, 4/4); moist; fine to gher percentage coarse sand; up to 3-inch; (30, 60, 10) SAND with GRAVEL (SP-SM); brown (10YR, 4/4); moist; fine to gher percentage coarse sand; up to 3-inch; (15, 80, 5)						SB-5A-140					0926	Few cobbles 4" in diameter; some pulverization. High pulverization at 140 ft bgs.
 145 -	dark yellowish t coarse sand; hi angular gravel Poorly-graded s grayish brown (SAND with GRAVEL (SP-SM); brown (10YR, 4/4); moist; fine to gher percentage coarse sand; up to 3-inch; (20, 75, 5) SAND with GRAVEL (SP); dark 10YR, 4/2); moist; medium to						-					1026	High pulverization. High pulverization.
 150 	65, 0) Poorly-graded \$ 5/3); moist; fine percentage me	ngular gravel up to 3-inch; (40, SAND (SP-SM); brown (10YR, to coarse sand; higher dium sand; (10, 85, 5) entage of coarse SAND; dark (10YR, 4/4)						SB-5A-150			75		1026	
- 155 - - - -	Poorly-graded s grayish brown (sand; higher pe	SAND with GRAVEL (SP); 10YR, 5/2); moist; fine to coarse rcentage fine to medium sand; up to 3-inch; (40, 65, 0)											1026	High pulverization at 154 ft bgs. High pulverization.
160 - - - -	Refusal; soil no	t recovered	<u> - 222-227-7</u>					SB-5A-16					1026	Boring paused at 160 ft bgs on 9/10/2020. Resumed on 9/11/2020.
165 - - - - 170 -	encountered; b	5 ft bgs. Groundwater not orehole backfilled with portland oped with concrete.					-	-						Boring completed on 9/11/2020 at 15:45.
							-	•						
- - - 180				04946		(-	•						
EQUIF DRILL DIAME	MTHD Sonic I	150CC EA LAR CO	TITUDE STING 1 ORDINA STEM: S. Siciliar	18°21'2 ATE	25" W	NOTES:	OR SYM	BOLS	AND A	BBRE		IONS		

ELL BORE BURBANK_SB-5A.GPJ GEOSNTEC.GDT 1

APPENDIX C

Groundwater Monitoring Logs

Project #:	N	٢	069161Br-1	Client:		bros	ynle(
Sampler:			Br	Gauging I	Date:	9	16.20			
Well I.D.	: A.I.C.	~03R		Well Diam	Well Diameter (in.): 2 3 4 6 8 5					
Total We	ll Depth (f	ít.):		Depth to W	Vater (ft.)	: 219	1.02			
Depth to 1	Free Produ	let:		Thickness						
Reference	ed to:	pvc 2	Grade	Flow Cell						
Purge Metho Sampling M	ethod:	3" Grundf Dedicated	Tubing .	Peristaltic PumpBladder PumpNew TubingOther						
Start Purge 7	Time: 10	54		600 m	-64.5'					
Time	Temp. (°C or °F)	pН	Cond. (mS/cm or (uS/cm)	• Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or 113)	Depth to Water (ft.)		
1035	236	7.17	310	42	2.60	- 9.9	1,800	219.09		
1038	24.1	7.11	377	20	612	- 48.9	3600	219.09		
1041	27.3	7.04	391	13	1.04	.55.1	5400	219.09		
1044	24.5	7.09	449	9	0.79	-70.5	7.200	219.09		
1047	24.6	7.07	452	8	0.78	-67.9	9,000	219.09		
1050	24.7	7.08	457	8	0.80	- 67.2	10,800	219.09		
							a			
			12		xet;					
			1							
Did well d	lewater?	Yes (Noj		Amount a	actually e	vacuated:			
Sampling	Time:				Sampling	, Date:	9.1620			
Sample I.I	D.: <u>A · I</u>	CWUSI	2		Laborator	ry:				
Analyzed	for:	TPH-G	BTEX MTE	BE TPH-D	TPH-D Other: See C.O.G					
Equipmen	t Blank I.I	D.:	(2) Time		Duplicate	e I.D.:		-		

Project #: 7	009/6.1	Bril		Client: Greusyniel						
Sampler: 3				Gauging Date: 91670						
Well I.D.: A	·I·Ch	109		Well Diameter (in.): 2 3 4 6 8 5						
Total Well D				Depth to Water (ft.) : 207.79						
Depth to Fre	e Produ	ct:		Thickness of Free Product (feet):						
Referenced t		PVC	Grade	Flow Cell Type: <u>VST pro plus</u>						
Purge Method: Sampling Metho Start Purge Time	od:	3" Grundfo Dedicated	os Pump Tubing	Peristaltic Pump New Pubing Other						
Start Purge Tim	e: () 8 1	L		600 1			Pump Depth: 2	<u>e.()</u>		
	Temp. Ç or °F)	pН	Cond. (mS/cm or µ8/cm))	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	Depth to Water (ft.)		
0845 2	2.1	8.72	1161	217	4.76	67.0	1.800	207.80		
0848 2	2.1	7.93	1158	62	4.28	60.2	3600	207.80		
0851 2	2.4	7.23	1159	34	3 93	62.6	5.400	207.80		
0854 2	2.3	7.15	1160	22	3.73	61.2	7.100	207,80		
0857 2	2.6	7.14	1160	15	322	58.7	9,000	207.80		
0900 2	24	7.16	1162	14	3.56	\$7.7	10,800	207.80		
0903 2	2.2	7,14	1156	14	354	59.6	12,600	207.80		
			14							
								1.54		
D: J 11 1			()		A					
Did well dev		Yes	No				evacuated: /2	.600ml		
Sampling Ti	me:	0904			Sampling	Date:	9,1620			
Sample I.D.:	A-1.	(woi	09		Laborator	ry:				
Analyzed for	r:	TPH-G	BTEX MT	BE TPH-D		Other:				
Equipment E	Blank I.I	D.:	@ Time		Duplicate	e I.D.:		2		

Project #:	20091	6-13-1		Client: beosyntec						
Sampler:		Br		Gauging Date: 9.17.10						
Well I.D.	: B- 6.C	w10		Well Diameter (in.): 2 3 4 6 8 $\overline{(S)}$						
Total We	ll Depth (f	t.) :		Depth to Water (ft.): 23382						
Depth to	Free Produ	uct:		Thickness of Free Product (feet):						
Reference	ed to:	PVC)	Grade	Flow Cell	Type:	SIPIO	plus			
Purge Metho Sampling M	ethod:	2" Grundf Dedicated	Tubing		Peristalic Pump Bladder Pump New Tubing Other					
Start Purge	Гіте: <u>/?\$</u> \$		Flow Rate:	2001	·/•••1		Pump Depth:	250		
Time	Temp. (Cor °F)	pН	Cond. (mS/cm or µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or piL)	Depth to Water (ft.)		
1258	26.4	7.94	777	12	3.47	58.6	600	23384		
1301	26.9	7.57	788	6	2.98	61.9	1.200	22284		
1304	27.0	7.35	794	5	2.97	58.4	1,800	233.84		
1307	27.1	7.33	799	5	2.94	58.1	2.400	23384		
1310	21.1	7.32	801	5	2.95	57.2	3.000	233.84		
					/					
				्म						
Did well o	lewater?	Yes	16				vacuated:	Dison		
Sampling	Time: /	811			Sampling	Date:	9.17.20			
Sample I.I	D.: ß.	6.0~10			Laborator	y:				
Analyzed	for:	TPH-G	BTEX MTE	BE TPH-D	TPH-D Other: See l. o l.					
Equipmen	t Blank I.I	D.:	@ Time		Duplicate		,	-		
		100								

-									
Project #:	200	916Br	-1	Client:	60	asinte	°(
Sampler:		G		Client: Cosyntex Gauging Date: 9.16-20					
Well I.D.	: ([~03		Well Diameter (in.): 2 3 4 6 8 5					
Total We	ll Depth (f			Depth to Water (ft.): 253.77					
Depth to 2	Free Produ	uct:		Thickness of Free Product (feet):					
Reference		HVC	Grade	Flow Cell		、 、	,		
Purge Metho Sampling M	ethod:	3" Grundf Dedicated	Tubing	£	Peristaltic Pump Bladder Pump New Tubing Other				
Start Purge	l'ime: 043	<u>. %</u>	Flow Rate: _	600~	min		Pump Depth:	274.5	
Time	Temp. (Cor °F)	pН	Cond. (mS/cm or μ\$/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	Depth to Water (ft.)	
1001	223	7.13	783	36	4.25	20.5	1800	253.29	
1004	22.9	6.99	846	28	5.14	60.6	3600	25330	
1007	226	6.97	870	22	4.96	69,7	9,400	25330	
1010	22.7	6.96	178	17 -	4.01	64.6	7,200	25330	
1013	22,7	6.98	865	/6	3.97	63,8	9,000	25330	
1016	22.7	6.98	867	17	395	63.2	10,800	25330	
			*	. *					
Did well o	lewater?	Yes /	Ng		Amount a	ictually e	vacuated: /	0,800	
Sampling	Time: /	710			Sampling		9.17.20		
Sample I.I	D.: (.1.	(wo)	}		Laborator	ry:			
Analyzed		TPH-G	BTEX MTE	BE TPH-D		Other:	Sep Conto		
Equipmen	t Blank I.I	D.:	@ Time		Duplicate I.D.:				

Project #:	20091	6.0~1		Client:	bearin	tec				
Sampler:		Dr		Gauging Date: 9.17.20						
Well I.D.:	. (.) (Wub		Well Diameter (in.): 2 3 4 6 8 5						
	ll Depth (f			Depth to Water (ft.) : 2350^7						
Depth to]	Free Produ	ict:		Thickness of Free Product (feet):						
Reference		PVQ	Grade	Flow Cell						
Purge Metho Sampling M		2" Grundf Dedicated	os Pump	2	Peristaltic P New Tubing	ump	Blader Pump Other_			
Start Purge	Fime: <u>1108</u>		Flow Rate:	200 -4	rig		Pump Depth: 7	48		
Time	Temp.	pН	Cond. (mS/cm or	v Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or prL)	Depth to Water (ft.)		
lυ	251	7.62	819	8	2.18	361	600	235-07		
(114	25.2	7.17	788	5	1.70	31.0	1.200	135.09		
1117	25.1	7.13	778	3	1.79	36.3	1.800	235.09		
1120	24.9	7.16	774	3	1.81	37.2	2.400	235.09		
(123	25.0	7.16	772	3	1.84	36,8	3,000	235,09		
	7									
			2							
Did well o	dewater?	Yes	No		Amount a	ctually e	vacuated:	3,000 mc		
Sampling	Time:	124			Sampling	Date:	9.17.20			
Sample I.I	D.: (.)	· (wob			Laborator	·y:				
Analyzed		TPH-G	BTEX MTE	BE TPH-D		Other:				
Equipmen	t Blank I.	D.:	@ Time		Duplicate	I.D.:		÷		

	0.1				1					
Project #:	2009/6	·BN		Client:	60	vynlec	•			
Sampler:	BN			Gauging D		9.16.	20			
Well I.D.:	C.I.	(200	8	Well Diam	Well Diameter (in.): 2 3 4 6 8 5					
Total We	ll Depth (f	t.):		Depth to W	Vater (ft.)	: 246	1.91	1.000		
Depth to 1	Free Produ	ict:		Thickness of Free Product (feet):						
Reference	ed to:	PVC	Grade	Flow Cell Type: YST Pro play						
Purge Metho Sampling M Start Purge 7	ethod:	3 " Grundfo Dedicated	-		Peristaltic P New Tubing	ump	Bladder Pump Other_ Pump Depth:	2.1		
					· · · · ·	 				
Time	Femp. (°C or °F)	pН	Cond. (mS/cm or µ8/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	Depth to Water (ft.)		
0812	21.1	7.35	946	116	513	78.6	1,800	247.03.		
0815	21.6	b.96	830	99	4.07	72.8	3.600	247.05		
0818	21.9	6.93	858	67'	3.16	68.0	5,400	247.05		
0821	22.4	6.96	853	59	2.73	685	7,200	247.05		
0824	22,5	6.98	846	61	2.75	69.4	9,000	247.05		
0827	225	6.97	844	58	2,77	69.1	10,800	247.05		
				j						
			2							
Did well o	lewater?	Yes	No		Amount a	ctually e	vacuated: /	U, 800m		
Sampling	Time: 💋	818			Sampling	Date:	9.17.20			
Sample I.I		1. (20	8		Laborator					
Analyzed	for:	TPH-G	BTEX MTE	BE TPH-D						
Equipmen	t Blank I.I	D.:	@ Time		Duplicate			-		

APPENDIX D

Waste Manifest

				- <u>}</u>	s.				e	_e ki	
	NON-HAZARDOUS			2. Page 1 of	3. Emergency Re	esponse Phone	4. Waste T	racking Nu	Imber		
	WASTE MANIFEST		0695647	1		Address (if differen			020101	2	
	5. Generator's Name and Generator's Phone: 6. Transporter 1 Company	ų									
		legrated Services,	Ins				U.S. EPA ID				
	7. Transporter 2 Company		sac.					ROO	01483	38	
							U.S. EPA ID	Number			
	8. Designated Facility Nam Construction of the second sec	Street CA 99813			<u> </u>	U.S. EPA ID Number					
	9. Waste Shipping N	ame and Description		en traction a	10	. Containers	11. Total	12. Unit			
					No	. Туре	Quantity	Wt./Vol.		200	
GENERATOR	^{1.} Man-Haza	rdonse Villaatin Linpubl (Daonn Winter)	-		DM	55	G			
ENE	2. Marchiller	niom Vianie Solici (S	tall			8270-09	10.15 (10.00)	~			
3		1996 -	ana)		7	DM	3500	P		2	
	3.	3								1	
	4.										
	13. Special Handling Instruct	ctions and Additional Information									
	a television of the second s		andling. Weight Profile # : 9b1			re approx			N - 1		
	14. GENERATOR'S/OFFEF	ROR'S CERTIFICATION: I hereb	by declare that the contents of this of proper condition for transport according to the second	consignment are	fully and accurate	ely described above	by the proper shi	pping name	, and are classified, page	LS skaged,	
	Generator's/Offeror's Printe		proper condition for transport acco	Signa		nd national governm	nental regulations.		Month Day	y Year	
1		SRITER		IX.	1				11/12/		
INT'L	15. International Shipments	Import to U.S.		Export from U.S	Bor	t of entry/exit:	And in the second s	No. of Concession, Name	1 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Ľ		xports only):		Export from 0.c		e leaving U.S.:				A A A A A A A A A A A A A A A A A A A	
Ë		ment of Receipt of Materials		Sec. Lan		and the second sec	~			-	
TRANSPORTER	Transporter 1 Printed/Typed	JUSE	REDE2	Signa		61	à		Month Day	020	
TRAI				Signa 		l	0		Month Day	/ Year	
	17. Discrepancy 17a. Discrepancy Indication	Space Quantity	Птуре		Residue		Partial Reje	ection	Full Re	jection	
					Manifest Refere	ance Number:					
	17b. Alternate Facility (or Ge	enerator)			Manifest Helen		U.S. EPA ID N	lumber			
FAC	Facility's Phone:						T				
Ē	17c. Signature of Alternate F	acility (or Generator)		and the second					Month Day	Year	
INAT										6	
- DESIGNATED FACILITY	HIYI ;	HIUI								- I	
	18. Designated Facility Own	er or Operator: Certification of re	ceipt of materials covered by the m	anifest except as	noted in Item 17	'a					
	Printed/Typed Name	VIA		Signat	and the second se	an A	1		Month Day	Year	
	Tony T	nam	el la seconda de la compositiva de la c	1	10th	1 16	and the second designed of the second designed d		10/20	20	
169	-BLC-0 5 11977 (Re	ev. 9/09)			6				TRANSPOR	TER #1	

200

APPENDIX E Soils Laboratory Data

🛟 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Sacramento 880 Riverside Parkway West Sacramento, CA 95605 Tel: (916)373-5600

Laboratory Job ID: 320-64470-1

Client Project/Site: PFAS - Hollywood Burbank Airport

For:

Geosyntec Consultants, Inc. 65 N. Raymond Avenue Suite 200 Pasadena, California 91103

Attn: Mital Desai

2. G.Tym

Authorized for release by: 9/30/2020 11:39:16 AM

Laura Turpen, Project Manager I (916)374-4414 Laura.Turpen@Eurofinset.com

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	7
Isotope Dilution Summary	22
QC Sample Results	25
QC Association Summary	32
Lab Chronicle	34
Certification Summary	38
Method Summary	39
Sample Summary	40
Chain of Custody	41
Receipt Checklists	43

Definitions/Glossary

Client: Geosyntec Consultants, Inc. Project/Site: PFAS - Hollywood Burbank Airport

Qualifiers

Qualifiers		3
LCMS Qualifier	Qualifier Description	4
*5	Isotope dilution analyte is outside acceptance limits.	
F1	MS and/or MSD recovery exceeds control limits.	5
F2	MS/MSD RPD exceeds control limits	
Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	0
CFL	Contains Free Liquid	Ο
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	9
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	13
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	
TNTC	Too Numerous To Count	

Job ID: 320-64470-1

Laboratory: Eurofins TestAmerica, Sacramento

Narrative

Job Narrative 320-64470-1

Comments

No additional comments.

Receipt

The samples were received on 9/10/2020 at 11:05 and 11:09 AM; the samples arrived in good condition, and where required, properly preserved and on ice. The temperatures of the 2 coolers at receipt time were 2.2° C and 3.4° C.

LCMS

Method EPA 537 (Mod): The recovery for several labeled isotopes in sample EB-200208 (320-64470-1) are outside the QC acceptance limits. Due to an entry error, the required DOD clean-up step was not performed during the initial preparation of this sample and the extract was not usable. Sufficient sample was not available to re-extract a third time.

The recovery for labeled isotope 13C8-FOSA was below 10% in sample EB-200208 (320-64470-1). The signal to noise was greater than 10:1, indicating the analysis had sufficient sensitivity to accurately quantify and correct the associated native compound for that recovery.

Method EPA 537 (Mod): Target analyte Perfluorooctanoic acid (PFOA) was detected in field blank sample FB-200208 (320-64470-2) and required a 10 fold dilution. Due to an entry error, the required DOD clean-up step was not performed during the initial preparation of this sample and the extract was not usable. Sufficient sample was not available to re-extract a third time.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

Method 3535_PFC: The MS/MSD for prep batch 410-43643 were performed on a different client's sample and were re-extracted and reported from an unrelated batch.

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.
Detection Summary

RL

1.6

1.6

RL

1.7

1.7

1.7

17

RL

0.61

0.61

0.61

RL

0.62

0.62

0.62

MDL Unit

MDL Unit

MDL Unit

MDL Unit

ng/L

ng/L

ng/L

ng/L

ng/L

ng/L

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

Result Qualifier

Result Qualifier

Result Qualifier

Result Qualifier

6.1 F2 F1

6.3 F2 F1

1.5 F2 F1

2.0

2.9

9.3

31

6.0

240

2.7

3.9

1.1

Client: Geosyntec Consultants, Inc. Project/Site: PFAS - Hollywood Burbank Airport

Client Sample ID: EB-200208

Client Sample ID: FB-200208

Perfluoropentanoic acid (PFPeA)

Perfluorohexanoic acid (PFHxA)

Perfluoropentanoic acid (PFPeA)

Perfluorohexanoic acid (PFHxA)

Perfluoroheptanoic acid (PFHpA)

Perfluoropentanoic acid (PFPeA)

Perfluorohexanoic acid (PFHxA)

Perfluoroheptanoic acid (PFHpA)

Perfluoropentanoic acid (PFPeA)

Perfluorohexanoic acid (PFHxA)

Perfluoroheptanoic acid (PFHpA)

Perfluorooctanoic acid (PFOA) - DL

Client Sample ID: SB-5A-60

Client Sample ID: SB-5A-70

Analvte

Analyte

Analyte

Analyte

Prep Type

Total/NA

Total/NA

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Prep Type

Total/NA

Total/NA

Total/NA

Prep Type

Total/NA

Total/NA

Total/NA

Lab Sample ID: 320-64470-1

EPA 537 (Mod)

1 🔅 EPA 537 (Mod)

1 🌣 EPA 537 (Mod)

1 🌣 EPA 537 (Mod)

1 🔅 EPA 537 (Mod)

1 🔅 EPA 537 (Mod)

1 🌣 EPA 537 (Mod)

Lab Sample ID: 320-64470-3

Lab Sample ID: 320-64470-4

Lab Sample ID: 320-64470-2

Dil Fac D Method

Dil Fac D Method

Dil Fac D Method

Dil Fac D Method

1

1

1

1

1

10

5

Lab Sample ID: 320-64470-5

No Detections.

Client Sample ID: FB-200209

Client Sample ID: EB-200209

No Detections.

Client Sample ID: SB-5A-80

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Туре
Perfluoropentanoic acid (PFPeA)	7.4	0.62	ug/Kg	1 ☆	EPA 537 (Mod)	Total/NA
Perfluorohexanoic acid (PFHxA)	6.4	0.62	ug/Kg	1 🌣	EPA 537 (Mod)	Total/NA
Perfluoroheptanoic acid (PFHpA)	2.8	0.62	ug/Kg	1 🌣	EPA 537 (Mod)	Total/NA

Client Sample ID: SB-5A-80-DUP

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluoropentanoic acid (PFPeA)	7.7	0.61		ug/Kg	1	₽	EPA 537 (Mod)	Total/NA
Perfluorohexanoic acid (PFHxA)	7.2	0.61		ug/Kg	1	₽	EPA 537 (Mod)	Total/NA
Perfluoroheptanoic acid (PFHpA)	2.8	0.61		ug/Kg	1	₽	EPA 537 (Mod)	Total/NA

Client Sample ID: SB-5A-90

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Ргер Туре
Perfluoropentanoic acid (PFPeA)	2.6	0.60	ug/Kg	1 ☆	EPA 537 (Mod)	Total/NA
Perfluorohexanoic acid (PFHxA)	3.0	0.60	ug/Kg	1 ☆	EPA 537 (Mod)	Total/NA
Perfluoroheptanoic acid (PFHpA)	1.1	0.60	ug/Kg	1 ☆	EPA 537 (Mod)	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Sacramento

Lab Sample ID: 320-64470-6

Lab Sample ID: 320-64470-7

Lab Sample ID: 320-64470-8

Detection Summary

Client: Geosyntec Consultants, Inc. Project/Site: PFAS - Hollywood Burbank Airport

Client Sample ID: SB-5A-100

Joh	ın	320-64470-1
200	ID.	520-04470-

Lab Sample ID: 320-64470-10

3 4 5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluoropentanoic acid (PFPeA)	3.3		0.61		ug/Kg	1	₽	EPA 537 (Mod)	Total/NA
Perfluorohexanoic acid (PFHxA)	5.5		0.61		ug/Kg	1	¢	EPA 537 (Mod)	Total/NA
Perfluoroheptanoic acid (PFHpA)	1.2		0.61		ug/Kg	1	¢	EPA 537 (Mod)	Total/NA
Client Sample ID: SB-5A-1	10					Lab S	an	nple ID: 320	-64470-1
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluoropentanoic acid (PFPeA)	3.7		0.60		ug/Kg	1	₽	EPA 537 (Mod)	Total/NA
Perfluorohexanoic acid (PFHxA)	2.8		0.60		ug/Kg	1	₽	EPA 537 (Mod)	Total/NA
Client Sample ID: SB-5A-1	20					Lab Sa	am	nple ID: 320	-64470-12
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluoropentanoic acid (PFPeA)	2.9		0.60		ug/Kg	1	¢	EPA 537 (Mod)	Total/NA
Perfluorohexanoic acid (PFHxA)	2.4		0.60		ug/Kg	1	₽	EPA 537 (Mod)	Total/NA
Client Sample ID: SB-5A-1	30					Lab Sa	am	nple ID: 320	-64470-1

Client Sample ID: SB-5A-130

No Detections.

This Detection Summary does not include radiochemical test results.

Client: Geosyntec Consultants, Inc. Project/Site: PFAS - Hollywood Burbank Airport

Client Sample ID: EB-200208 Date Collected: 09/08/20 14:10 Date Received: 09/10/20 11:05

Job	١D·	320-64470-1
000	ID.	020-04470-1

Lab Sample ID: 320-64470-1 Matrix: Water

Matrix: Water

5

Analyte		Qualifier	RL	MDL		<u>D</u>	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	ND		3.9		ng/L		09/14/20 17:09	09/16/20 18:02	1
Perfluoropentanoic acid (PFPeA)	2.0		1.6		ng/L		09/14/20 17:09	09/16/20 18:02	1
Perfluorohexanoic acid (PFHxA)	2.9		1.6		ng/L		09/14/20 17:09	09/16/20 18:02	1
Perfluoroheptanoic acid (PFHpA)	ND		1.6		ng/L		09/14/20 17:09	09/16/20 18:02	1
Perfluorooctanoic acid (PFOA)	ND		1.6		ng/L		09/14/20 17:09	09/16/20 18:02	1
Perfluorononanoic acid (PFNA)	ND		1.6		ng/L		09/14/20 17:09	09/16/20 18:02	1
Perfluorodecanoic acid (PFDA)	ND		1.6		ng/L		09/14/20 17:09	09/16/20 18:02	1
Perfluoroundecanoic acid (PFUnA)	ND		1.6		ng/L		09/14/20 17:09	09/16/20 18:02	1
Perfluorododecanoic acid (PFDoA)	ND		1.6		ng/L		09/14/20 17:09	09/16/20 18:02	1
Perfluorotridecanoic acid (PFTriA)	ND		1.6		ng/L		09/14/20 17:09	09/16/20 18:02	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.6		ng/L		09/14/20 17:09	09/16/20 18:02	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.6		ng/L		09/14/20 17:09	09/16/20 18:02	1
Perfluoropentanesulfonic acid PFPeS)	ND		1.6		ng/L		09/14/20 17:09	09/16/20 18:02	1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.6		ng/L		09/14/20 17:09	09/16/20 18:02	1
Perfluoroheptanesulfonic Acid	ND		1.6		ng/L			09/16/20 18:02	1
PFHpS)									•
Perfluorooctanesulfonic acid (PFOS)	ND		1.6		ng/L		09/14/20 17:09	09/16/20 18:02	1
Perfluorodecanesulfonic acid (PFDS)	ND		1.6		ng/L		09/14/20 17:09	09/16/20 18:02	1
Perfluorooctanesulfonamide (FOSA)	ND		1.6		ng/L		09/14/20 17:09	09/16/20 18:02	1
I-ethylperfluorooctanesulfonamidoac tic acid (NEtFOSAA)	ND		2.4		ng/L		09/14/20 17:09	09/16/20 18:02	1
I-methylperfluorooctanesulfonamidoa etic acid (NMeFOSAA)	ND		1.6		ng/L		09/14/20 17:09	09/16/20 18:02	1
2 FTS	ND		1.6		ng/L		09/14/20 17:09	09/16/20 18:02	1
:2 FTS	ND		3.9		ng/L			09/16/20 18:02	
:2 FTS	ND		2.4		ng/L			09/16/20 18:02	1
sotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
3C4 PFBA	116		50 - 150				09/14/20 17:09	09/16/20 18:02	1
3C5 PFPeA	127		50 - 150				09/14/20 17:09	09/16/20 18:02	1
3C4 PFHpA	151	*5	50 - 150				09/14/20 17:09	09/16/20 18:02	1
3C2 PFTeDA	78		50 - 150				09/14/20 17:09	09/16/20 18:02	1
3C3 PFBS	117		50 - 150				09/14/20 17:09	09/16/20 18:02	1
3C8 FOSA	3	*5	50 - 150				09/14/20 17:09	09/16/20 18:02	1
12-6:2 FTS	203	*5	50 - 150				09/14/20 17:09	09/16/20 18:02	1
12-4:2 FTS	237	*5	50 - 150				09/14/20 17:09	09/16/20 18:02	1
12-8:2 FTS	121		50 - 150				09/14/20 17:09	09/16/20 18:02	1
5-NEtFOSAA	93		50 - 150					09/16/20 18:02	
3-NMeFOSAA	84		50 - 150					09/16/20 18:02	1
3C6 PFDA	90		50 - 150					09/16/20 18:02	1
3C2-PFDoDA	68		50 - 150					09/16/20 18:02	
3C5 PFHxA	118		50 - 150 50 - 150					09/16/20 18:02	1
3C7 PFUnA	82		50 - 150 50 - 150					09/16/20 18:02	1
3C8 PFOA								09/16/20 18:02	
	120		50 - 150 50 - 150						
3C9 PFNA	183	5	50 - 150 50 - 150					09/16/20 18:02	1
I3C3 PFHxS I3C8 PFOS	103 122		50 - 150 50 - 150					09/16/20 18:02 09/16/20 18:02	1

Client: Geosyntec Consultants, Inc. Project/Site: PFAS - Hollywood Burbank Airport

Client Sample ID: FB-200208 Date Collected: 09/08/20 12:20 Date Received: 09/10/20 11:05

Job	ID:	320-64470-1
000		020 01110 1

Lab Sample ID: 320-64470-2 Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Perfluorobutanoic acid (PFBA)	ND		4.2		ng/L		09/14/20 17:09	09/15/20 18:13	
Perfluoropentanoic acid (PFPeA)	9.3		1.7		ng/L		09/14/20 17:09	09/15/20 18:13	
Perfluorohexanoic acid (PFHxA)	31		1.7		ng/L		09/14/20 17:09	09/15/20 18:13	
Perfluoroheptanoic acid (PFHpA)	6.0		1.7		ng/L		09/14/20 17:09	09/15/20 18:13	
Perfluorononanoic acid (PFNA)	ND		1.7		ng/L		09/14/20 17:09	09/15/20 18:13	
Perfluorodecanoic acid (PFDA)	ND		1.7		ng/L		09/14/20 17:09	09/15/20 18:13	
Perfluoroundecanoic acid (PFUnA)	ND		1.7		ng/L		09/14/20 17:09	09/15/20 18:13	
Perfluorododecanoic acid (PFDoA)	ND		1.7		ng/L		09/14/20 17:09	09/15/20 18:13	
Perfluorotridecanoic acid (PFTriA)	ND		1.7		ng/L		09/14/20 17:09	09/15/20 18:13	
Perfluorotetradecanoic acid (PFTeA)	ND		1.7		ng/L		09/14/20 17:09	09/15/20 18:13	
Perfluorobutanesulfonic acid (PFBS)	ND		1.7		ng/L		09/14/20 17:09	09/15/20 18:13	
Perfluoropentanesulfonic acid (PFPeS)	ND		1.7		ng/L		09/14/20 17:09	09/15/20 18:13	
Perfluorohexanesulfonic acid (PFHxS)	ND		1.7		ng/L		09/14/20 17:09	09/15/20 18:13	
Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.7		ng/L		09/14/20 17:09	09/15/20 18:13	
Perfluorooctanesulfonic acid (PFOS)	ND		1.7		ng/L		09/14/20 17:09	09/15/20 18:13	
Perfluorodecanesulfonic acid (PFDS)	ND		1.7		ng/L		09/14/20 17:09	09/15/20 18:13	
Perfluorooctanesulfonamide (FOSA)	ND		1.7		ng/L		09/14/20 17:09	09/15/20 18:13	
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		2.5		ng/L		09/14/20 17:09	09/15/20 18:13	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		1.7		ng/L		09/14/20 17:09	09/15/20 18:13	
4:2 FTS	ND		1.7		ng/L		09/14/20 17:09	09/15/20 18:13	
6:2 FTS	ND		4.2		ng/L		09/14/20 17:09	09/15/20 18:13	
3:2 FTS	ND		2.5		ng/L		09/14/20 17:09	09/15/20 18:13	
sotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
I3C4 PFBA	92		50 - 150				<u> </u>	09/15/20 18:13	
13C5 PFPeA	98		50 - 150				09/14/20 17:09	09/15/20 18:13	
13C4 PFHpA	103		50 - 150				09/14/20 17:09	09/15/20 18:13	
13C2 PFTeDA	65		50 - 150				09/14/20 17:09	09/15/20 18:13	
13C3 PFBS	99		50 - 150				09/14/20 17:09	09/15/20 18:13	
13C8 FOSA	58		50 - 150				09/14/20 17:09	09/15/20 18:13	
M2-6:2 FTS	103		50 - 150				09/14/20 17:09	09/15/20 18:13	
M2-4:2 FTS	94		50 - 150				09/14/20 17:09	09/15/20 18:13	
M2-8:2 FTS	78		50 - 150				09/14/20 17:09	09/15/20 18:13	
15-NEtFOSAA	70		50 - 150				09/14/20 17:09	09/15/20 18:13	
13-NMeFOSAA	78		50 - 150					09/15/20 18:13	
13C6 PFDA	77		50 - 150				09/14/20 17:09	09/15/20 18:13	
13C2-PFDoDA	70		50 - 150					09/15/20 18:13	
13C5 PFHxA	93		50 - 150					09/15/20 18:13	
13C7 PFUnA	71		50 - 150					09/15/20 18:13	
13C8 PFOA	100		50 - 150					09/15/20 18:13	
13C9 PFNA	88		50 - 150					09/15/20 18:13	
13C3 PFHxS	103		50 - 150					09/15/20 18:13	
13C8 PFOS	87		50 - 150 50 - 150					09/15/20 18:13	

Method: EPA 537 (Mod) - EPA 537 mod QSM 5.1, Table B-15 - DL

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Perfluorooctanoic acid (PFOA)	240	17	ng/L	09/14/20 17:09	09/15/20 22:08	10

lient Sample ID: FB-2002	08			Lab Sample ID: 320-64470-
ate Collected: 09/08/20 12:20 ate Received: 09/10/20 11:05	0			Lab Sample ID: 320-64470- Matrix: Wate
Isotope Dilution 13C8 PFOA	%Recovery Qualifie	ier <u>Limits</u> 50 - 150		Prepared Analyzed Dil Fa 09/14/20 17:09 09/15/20 22:08 11
lient Sample ID: SB-5A-6	0			Lab Sample ID: 320-64470-
ate Collected: 09/08/20 13:25				Matrix: Soli
ate Received: 09/10/20 11:05				Percent Solids: 95.
Method: EPA 537 (Mod) - EPA 5 Analyte	537 mod QSM 5.1 Result Qualifie	· ·	MDL Unit	D Prepared Analyzed Dil Fa
Perfluorobutanoic acid (PFBA)	ND	2.0	ug/Kg	□ □
Perfluoropentanoic acid (PFPeA)	2.7	0.61	ug/Kg	
Perfluorohexanoic acid (PFHxA)	3.9	0.61	ug/Kg	
Perfluoroheptanoic acid (PFHpA)	1.1	0.61	ug/Kg	Ø9/17/20 18:17 09/24/20 09:36
Perfluorooctanoic acid (PFOA)	ND	0.61	ug/Kg	Ø Ø
Perfluorononanoic acid (PFNA)	ND	0.61	ug/Kg	
Perfluorodecanoic acid (PFDA)	ND	0.61	ug/Kg	Φ 09/17/20 18:17 09/24/20 09:36
Perfluoroundecanoic acid (PFUnA)	ND	0.61	ug/Kg	
Perfluorododecanoic acid (PFDoA)	ND	0.61	ug/Kg	☆ 09/17/20 18:17 09/24/20 09:36
Perfluorotridecanoic acid (PFTriA)	ND	0.61	ug/Kg	
Perfluorotetradecanoic acid (PFTeA)	ND	0.61	ug/Kg	☆ 09/17/20 18:17 09/24/20 09:36
Perfluorobutanesulfonic acid (PFBS)	ND	2.0	ug/Kg	
Perfluoropentanesulfonic acid (PFPeS)	ND	3.0	ug/Kg	☆ 09/17/20 18:17 09/24/20 09:36
Perfluorohexanesulfonic acid (PFHxS)	ND	0.61	ug/Kg	☆ 09/17/20 18:17 09/24/20 09:36
Perfluoroheptanesulfonic Acid (PFHpS)	ND	0.61	ug/Kg	☆ 09/17/20 18:17 09/24/20 09:36
Perfluorooctanesulfonic acid (PFOS)	ND	0.61	ug/Kg	☆ 09/17/20 18:17 09/24/20 09:36
Perfluorodecanesulfonic acid (PFDS)	ND	0.61	ug/Kg	☆ 09/17/20 18:17 09/24/20 09:36
Perfluorooctanesulfonamide (FOSA)	ND	0.61	ug/Kg	☆ 09/17/20 18:17 09/24/20 09:36
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND	2.0	ug/Kg	 ↔ 09/17/20 18:17 09/24/20 09:36 ↔ 09/17/20 18:17 09/24/20 09:36
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA) 4:2 FTS	ND	2.0 2.0	ug/Kg ug/Kg	 09/17/20 18:17 09/24/20 09:36 09/17/20 18:17 09/24/20 09:36
4:2 FTS 6:2 FTS	ND	2.0 2.0	ug/Kg ug/Kg	 ♀ 09/17/20 18:17 09/24/20 09:36 ♀ 09/17/20 18:17 09/24/20 09:36
8:2 FTS	ND	3.0	ug/Kg	© 09/17/20 18:17 09/24/20 09:36
			49/1.9	
Isotope Dilution	%Recovery Qualifie			Prepared Analyzed Dil Fa
13C4 PFBA 13C5 PFPeA	85 85	50 - 150 50 - 150		09/17/20 18:17 09/24/20 09:36 09/17/20 18:17 09/24/20 09:36
		50 - 150 50 - 150		09/17/20 18:17 09/24/20 09:36
13C4 РFHpA 13C2 РЕТерд	76 85	50 - 150 50 - 150		09/17/20 18:17 09/24/20 09:36 09/17/20 18:17 09/24/20 09:36
13C2 PFTeDA 13C3 PERS	85 84	50 - 150 50 - 150		
13C3 PFBS 13C8 FOSA	84 96	50 - 150 50 - 150		09/17/20 18:17 09/24/20 09:36 09/17/20 18:17 09/24/20 09:36
13C8 FOSA M2-6:2 FTS				09/17/20 18:17 09/24/20 09:36 09/17/20 18:17 09/24/20 09:36
M2-6:2 FTS M2-4:2 FTS	88 79	50 - 150 50 - 150		09/17/20 18:17 09/24/20 09:36 09/17/20 18:17 09/24/20 09:36
M2-4:2 FTS M2-8:2 FTS	79 86	50 - 150 50 - 150		09/17/20 18:17 09/24/20 09:36
d5-NEtFOSAA	85	50 - 150 50 - 150		09/17/20 18:17 09/24/20 09:36
d3-NEtFOSAA d3-NMeFOSAA	85 83	50 - 150 50 - 150		09/17/20 18:17 09/24/20 09:36 09/17/20 18:17 09/24/20 09:36
13C6 PFDA	83 86	50 - 150 50 - 150		09/17/20 18:17 09/24/20 09:36
13C0 PFDA 13C2-PFDoDA	85	50 - 150 50 - 150		09/17/20 18:17 09/24/20 09:36
13C2-PFD0DA 13C5 PFHxA	85 79	50 - 150 50 - 150		09/17/20 18:17 09/24/20 09:36
13C5 PFIIXA 13C7 PFUIA	92	50 - 150 50 - 150		09/17/20 18:17 09/24/20 09:36
13U/ Pruna	34			U3/11/20 10.11 U3/27/20 U3.00

Client: Geosyntec Consultants, Inc. Project/Site: PFAS - Hollywood Burbank Airport

Client Sample ID: SB-5A-60 **Date Coll** Date Re

(PFHpS)

Perfluorooctanesulfonic acid (PFOS)

Perfluorodecanesulfonic acid (PFDS)

Perfluorooctanesulfonamide (FOSA)

N-ethylperfluorooctanesulfonamidoac

N-methylperfluorooctanesulfonamidoa

etic acid (NEtFOSAA)

cetic acid (NMeFOSAA)

Date Collected: 09/08/20 13:25 Date Received: 09/10/20 11:05								Matrix Percent Solid	
Method: EPA 537 (Mod) - EPA	537 mod Q	SM 5.1, Ta	ble B-15 (Cor	ntinued))				
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
13C9 PFNA	83		50 - 150				09/17/20 18:17	09/24/20 09:36	
13C3 PFHxS	82		50 - 150				09/17/20 18:17	09/24/20 09:36	
13C8 PFOS	81		50 - 150				09/17/20 18:17	09/24/20 09:36	
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fa
Percent Moisture	4.4		1.0		%			09/15/20 20:21	
Percent Solids	95.6		1.0		%			09/15/20 20:21	
Method: EPA 537 (Mod) - EPA						-	_ .		_ =
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Perfluorobutanoic acid (PFBA)		F2 F1	2.1		ug/Kg	¢	09/17/20 18:17		
Perfluoropentanoic acid (PFPeA)		F2 F1	0.62		ug/Kg	¢	09/17/20 18:17		
Perfluorohexanoic acid (PFHxA)		F2 F1	0.62		ug/Kg	.		09/23/20 01:34	
Perfluoroheptanoic acid (PFHpA)		F2 F1	0.62		ug/Kg	¢		09/23/20 01:34	
Perfluorooctanoic acid (PFOA)		F2 F1	0.62		ug/Kg	☆		09/23/20 01:34	
Perfluorononanoic acid (PFNA)		F2 F1	0.62		ug/Kg	.		09/23/20 01:34	
Perfluorodecanoic acid (PFDA)		F2 F1	0.62		ug/Kg	¢		09/23/20 01:34	
Perfluoroundecanoic acid (PFUnA)	ND		0.62		ug/Kg	¢		09/23/20 01:34	
Perfluorododecanoic acid (PFDoA)		F2 F1	0.62		ug/Kg	¢		09/23/20 01:34	
Perfluorotridecanoic acid (PFTriA)		F2 F1	0.62		ug/Kg	☆		09/23/20 01:34	
Perfluorotetradecanoic acid (PFTeA)		F2 F1	0.62		ug/Kg	¢		09/23/20 01:34	
Perfluorobutanesulfonic acid (PFBS)		F2 F1	2.1		ug/Kg	¢		09/23/20 01:34	
Perfluoropentanesulfonic acid (PFPeS)	ND	F2 F1	3.1		ug/Kg	¢	09/17/20 18:17	09/23/20 01:34	
Perfluorohexanesulfonic acid (PFHxS)	ND	F2 F1	0.62		ug/Kg	₽	09/17/20 18:17	09/23/20 01:34	
Perfluoroheptanesulfonic Acid	ND	F2 F1	0.62		ug/Kg	¢	09/17/20 18:17	09/23/20 01:34	

4:2 FTS	ND	F2 F1	2.1	ug/Kg	¢	09/17/20 18:17	09/23/20 01:34	1
6:2 FTS	ND	F2 F1	2.1	ug/Kg	¢.	09/17/20 18:17	09/23/20 01:34	1
8:2 FTS	ND	F2 F1	3.1	ug/Kg	¢	09/17/20 18:17	09/23/20 01:34	1
Isotope Dilution	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
13C4 PFBA	96		50 - 150			09/17/20 18:17	09/23/20 01:34	1
13C5 PFPeA	96		50 - 150			09/17/20 18:17	09/23/20 01:34	1
13C4 PFHpA	86		50 - 150			09/17/20 18:17	09/23/20 01:34	1
13C2 PFTeDA	93		50 - 150			09/17/20 18:17	09/23/20 01:34	1
13C3 PFBS	97		50 - 150			09/17/20 18:17	09/23/20 01:34	1
13C8 FOSA	93		50 - 150			09/17/20 18:17	09/23/20 01:34	1
M2-6:2 FTS	100		50 - 150			09/17/20 18:17	09/23/20 01:34	1
M2-4:2 FTS	87		50 - 150			09/17/20 18:17	09/23/20 01:34	1

0.62

0.62

0.62

2.1

2.1

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ND F2 F1

ND F2 F1

ND F2

ND F2

ND F2

Eurofins TestAmerica, Sacramento

09/17/20 18:17 09/23/20 01:34
 09/23/20 01:34
 09/23/20 01:34
 09/23/20 01:34
 09/23/20 01:34
 09/23/20 01:34
 09/23/20 01:34
 09/23/20 01:34
 09/23/20 01:34
 09/23/20 01:34
 09/23/20 01:34
 09/23/20 01:34
 09/23/20 01:34
 09/23/20 01:34
 09/23/20 01:34
 09/23/20 01:34
 09/23/20 01:34
 09/23/20 01:34
 09/23/20 01:34
 09/23/20 01:34
 09/23/20 01:34
 09/23/20 01:34
 09/23/20 01:34
 09/23/20
 09/23/20
 09/23/20
 09/23/20
 09/23/20
 09/23/20
 09/23/20
 09/23/20
 09/23/20
 09/23/20
 01:34
 09/23/20
 01:34
 09/23/20
 01:34
 09/23/20
 01:34
 09/23/20
 01:34
 09/23/20
 01:34
 09/23/20
 01:34
 09/23/20
 01:34
 09/23/20
 01:34
 09/23/20
 01:34
 09/23/20
 01:34
 09/23/20
 01:34
 09/23/20
 01:34
 09/23/20
 01:34
 09/23/20
 01:34
 09/23/20
 01:34
 09/23/20
 01:34
 09/23/20
 01:34
 09/23/20
 01:34
 09/23/20
 01:34
 09/23/20
 01:34
 00

09/17/20 18:17 09/23/20 01:34

· 09/17/20 18:17 09/23/20 01:34

09/17/20 18:17 09/23/20 01:34
 09/23/20 01:34
 09/23/20 01:34
 09/23/20 01:34
 09/23/20 01:34
 09/23/20 01:34
 09/23/20 01:34
 09/23/20 01:34
 09/23/20 01:34
 09/23/20 01:34
 09/23/20 01:34
 09/23/20 01:34
 09/23/20 01:34
 09/23/20 01:34
 09/23/20 01:34
 09/23/20 01:34
 09/23/20 01:34
 09/23/20 01:34
 09/23/20 01:34
 09/23/20 01:34
 09/23/20 01:34
 09/23/20 01:34
 09/23/20
 09/23/20
 09/23/20
 09/23/20
 09/23/20
 09/23/20
 09/23/20
 09/23/20
 09/23/20
 09/23/20
 09/23/20
 09/23/20
 09/23/20
 09/23/20
 09/23/20
 01
 09/23/20
 01
 09/23/20
 01
 09/23/20
 01
 09/23/20
 01
 09/23/20
 01
 09/23/20
 01
 09/23/20
 01
 09/23/20
 01
 09/23/20
 01
 09/23/20
 01
 09/23/20
 01
 09/23/20
 01
 09/23/20
 01
 09/23/20
 01
 09/23/20
 01
 09/23/20
 01
 09/23/20
 01
 09/23/20
 01
 09/23/20
 01
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 0

· 09/17/20 18:17 09/23/20 01:34

5 6

Job ID: 320-64470-1

Lab Sample ID: 320-64470-3

1

1

1

1

1

Client: Geosyntec Consultants, Inc. Project/Site: PFAS - Hollywood Burbank Airport

Client Sample ID: SB-5A-70 Date Collected: 09/08/20 14:35 Date Received: 09/10/20 11:05

Job ID: 320-64470-1

Matrix: Water

Lab Sample ID: 320-64470-4 Matrix: Solid Percent Solids: 96.5

Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
M2-8:2 FTS	99		50 - 150				09/17/20 18:17	09/23/20 01:34	1
d5-NEtFOSAA	82		50 - 150				09/17/20 18:17	09/23/20 01:34	1
d3-NMeFOSAA	81		50 - 150				09/17/20 18:17	09/23/20 01:34	1
13C6 PFDA	94		50 - 150				09/17/20 18:17	09/23/20 01:34	1
13C2-PFDoDA	92		50 - 150				09/17/20 18:17	09/23/20 01:34	1
13C5 PFHxA	90		50 - 150				09/17/20 18:17	09/23/20 01:34	1
13C7 PFUnA	96		50 - 150				09/17/20 18:17	09/23/20 01:34	1
13C8 PFOA	97		50 - 150				09/17/20 18:17	09/23/20 01:34	1
13C9 PFNA	97		50 - 150				09/17/20 18:17	09/23/20 01:34	1
13C3 PFHxS	93		50 - 150				09/17/20 18:17	09/23/20 01:34	1
13C8 PFOS	97		50 - 150				09/17/20 18:17	09/23/20 01:34	1
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	3.5		1.0		%			09/15/20 20:21	1
Percent Solids	96.5		1.0		%			09/15/20 20:21	1

Client Sample ID: EB-200209 Date Collected: 09/09/20 11:04

Date Received: 09/10/20 11:05

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	ND	4.1	ng/L		09/14/20 17:09	09/15/20 18:22	1
Perfluoropentanoic acid (PFPeA)	ND	1.6	ng/L		09/14/20 17:09	09/15/20 18:22	1
Perfluorohexanoic acid (PFHxA)	ND	1.6	ng/L		09/14/20 17:09	09/15/20 18:22	1
Perfluoroheptanoic acid (PFHpA)	ND	1.6	ng/L		09/14/20 17:09	09/15/20 18:22	1
Perfluorooctanoic acid (PFOA)	ND	1.6	ng/L		09/14/20 17:09	09/15/20 18:22	1
Perfluorononanoic acid (PFNA)	ND	1.6	ng/L		09/14/20 17:09	09/15/20 18:22	1
Perfluorodecanoic acid (PFDA)	ND	1.6	ng/L		09/14/20 17:09	09/15/20 18:22	1
Perfluoroundecanoic acid (PFUnA)	ND	1.6	ng/L		09/14/20 17:09	09/15/20 18:22	1
Perfluorododecanoic acid (PFDoA)	ND	1.6	ng/L		09/14/20 17:09	09/15/20 18:22	1
Perfluorotridecanoic acid (PFTriA)	ND	1.6	ng/L		09/14/20 17:09	09/15/20 18:22	1
Perfluorotetradecanoic acid (PFTeA)	ND	1.6	ng/L		09/14/20 17:09	09/15/20 18:22	1
Perfluorobutanesulfonic acid (PFBS)	ND	1.6	ng/L		09/14/20 17:09	09/15/20 18:22	1
Perfluoropentanesulfonic acid (PFPeS)	ND	1.6	ng/L		09/14/20 17:09	09/15/20 18:22	1
Perfluorohexanesulfonic acid (PFHxS)	ND	1.6	ng/L		09/14/20 17:09	09/15/20 18:22	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND	1.6	ng/L		09/14/20 17:09	09/15/20 18:22	1
Perfluorooctanesulfonic acid (PFOS)	ND	1.6	ng/L		09/14/20 17:09	09/15/20 18:22	1
Perfluorodecanesulfonic acid (PFDS)	ND	1.6	ng/L		09/14/20 17:09	09/15/20 18:22	1
Perfluorooctanesulfonamide (FOSA)	ND	1.6	ng/L		09/14/20 17:09	09/15/20 18:22	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND	2.4	ng/L		09/14/20 17:09	09/15/20 18:22	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND	1.6	ng/L		09/14/20 17:09	09/15/20 18:22	1
4:2 FTS	ND	1.6	ng/L		09/14/20 17:09	09/15/20 18:22	1
6:2 FTS	ND	4.1	ng/L		09/14/20 17:09	09/15/20 18:22	1
8:2 FTS	ND	2.4	ng/L		09/14/20 17:09	09/15/20 18:22	1

Client Sample ID: EB-200209 Date Collected: 09/09/20 11:04 Date Received: 09/10/20 11:05

Isotope Dilution	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C4 PFBA	87		50 - 150	09/14/20 17:09	09/15/20 18:22	1
13C5 PFPeA	95		50 - 150	09/14/20 17:09	09/15/20 18:22	1
13C4 PFHpA	92		50 - 150	09/14/20 17:09	09/15/20 18:22	1
13C2 PFTeDA	58		50 - 150	09/14/20 17:09	09/15/20 18:22	1
13C3 PFBS	95		50 - 150	09/14/20 17:09	09/15/20 18:22	1
13C8 FOSA	54		50 - 150	09/14/20 17:09	09/15/20 18:22	1
M2-6:2 FTS	100		50 - 150	09/14/20 17:09	09/15/20 18:22	1
M2-4:2 FTS	93		50 - 150	09/14/20 17:09	09/15/20 18:22	1
M2-8:2 FTS	75		50 - 150	09/14/20 17:09	09/15/20 18:22	1
d5-NEtFOSAA	73		50 - 150	09/14/20 17:09	09/15/20 18:22	1
d3-NMeFOSAA	74		50 - 150	09/14/20 17:09	09/15/20 18:22	1
13C6 PFDA	75		50 - 150	09/14/20 17:09	09/15/20 18:22	1
13C2-PFDoDA	67		50 - 150	09/14/20 17:09	09/15/20 18:22	1
13C5 PFHxA	91		50 - 150	09/14/20 17:09	09/15/20 18:22	1
13C7 PFUnA	77		50 - 150	09/14/20 17:09	09/15/20 18:22	1
13C8 PFOA	95		50 - 150	09/14/20 17:09	09/15/20 18:22	1
13C9 PFNA	89		50 - 150	09/14/20 17:09	09/15/20 18:22	1
13C3 PFHxS	94		50 - 150	09/14/20 17:09	09/15/20 18:22	1
13C8 PFOS	88		50 - 150	09/14/20 17:09	09/15/20 18:22	1

Client Sample ID: FB-200209 Date Collected: 09/09/20 11:08 Date Received: 09/10/20 11:05

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	ND	4.1	ng/L	0	9/14/20 17:09	09/15/20 18:31	1
Perfluoropentanoic acid (PFPeA)	ND	1.6	ng/L	0	9/14/20 17:09	09/15/20 18:31	1
Perfluorohexanoic acid (PFHxA)	ND	1.6	ng/L	0	9/14/20 17:09	09/15/20 18:31	1
Perfluoroheptanoic acid (PFHpA)	ND	1.6	ng/L	0	9/14/20 17:09	09/15/20 18:31	1
Perfluorooctanoic acid (PFOA)	ND	1.6	ng/L	0	9/14/20 17:09	09/15/20 18:31	1
Perfluorononanoic acid (PFNA)	ND	1.6	ng/L	0	9/14/20 17:09	09/15/20 18:31	1
Perfluorodecanoic acid (PFDA)	ND	1.6	ng/L	0	9/14/20 17:09	09/15/20 18:31	1
Perfluoroundecanoic acid (PFUnA)	ND	1.6	ng/L	0	9/14/20 17:09	09/15/20 18:31	1
Perfluorododecanoic acid (PFDoA)	ND	1.6	ng/L	0	9/14/20 17:09	09/15/20 18:31	1
Perfluorotridecanoic acid (PFTriA)	ND	1.6	ng/L	0	9/14/20 17:09	09/15/20 18:31	1
Perfluorotetradecanoic acid (PFTeA)	ND	1.6	ng/L	0	9/14/20 17:09	09/15/20 18:31	1
Perfluorobutanesulfonic acid (PFBS)	ND	1.6	ng/L	0	9/14/20 17:09	09/15/20 18:31	1
Perfluoropentanesulfonic acid (PFPeS)	ND	1.6	ng/L	0	9/14/20 17:09	09/15/20 18:31	1
Perfluorohexanesulfonic acid (PFHxS)	ND	1.6	ng/L	0	9/14/20 17:09	09/15/20 18:31	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND	1.6	ng/L	0	9/14/20 17:09	09/15/20 18:31	1
Perfluorooctanesulfonic acid (PFOS)	ND	1.6	ng/L	0	9/14/20 17:09	09/15/20 18:31	1
Perfluorodecanesulfonic acid (PFDS)	ND	1.6	ng/L	0	9/14/20 17:09	09/15/20 18:31	1
Perfluorooctanesulfonamide (FOSA)	ND	1.6	ng/L	0	9/14/20 17:09	09/15/20 18:31	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND	2.4	ng/L	0	9/14/20 17:09	09/15/20 18:31	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND	1.6	ng/L	0	9/14/20 17:09	09/15/20 18:31	1
4:2 FTS	ND	1.6	ng/L	0	9/14/20 17:09	09/15/20 18:31	1
6:2 FTS	ND	4.1	ng/L	0	9/14/20 17:09	09/15/20 18:31	1

Lab Sample ID: 320-64470-5 Matrix: Water

Matrix: Water

Lab Sample ID: 320-64470-6

9/30/2020

Client Sample ID: FB-200209 Date Collected: 09/09/20 11:08 Date Received: 09/10/20 11:05

Method: EPA 537 (Mod) - EPA 537 mod QSM 5.1, Table B-15 (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
8:2 FTS	ND		2.4		ng/L		09/14/20 17:09	09/15/20 18:31	1	
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
13C4 PFBA	99		50 - 150				09/14/20 17:09	09/15/20 18:31	1	5
13C5 PFPeA	104		50 - 150				09/14/20 17:09	09/15/20 18:31	1	
13C4 PFHpA	104		50 - 150				09/14/20 17:09	09/15/20 18:31	1	
13C2 PFTeDA	73		50 - 150				09/14/20 17:09	09/15/20 18:31	1	
13C3 PFBS	106		50 - 150				09/14/20 17:09	09/15/20 18:31	1	2
13C8 FOSA	68		50 - 150				09/14/20 17:09	09/15/20 18:31	1	
M2-6:2 FTS	115		50 - 150				09/14/20 17:09	09/15/20 18:31	1	
M2-4:2 FTS	111		50 - 150				09/14/20 17:09	09/15/20 18:31	1	
M2-8:2 FTS	91		50 - 150				09/14/20 17:09	09/15/20 18:31	1	
d5-NEtFOSAA	77		50 - 150				09/14/20 17:09	09/15/20 18:31	1	
d3-NMeFOSAA	78		50 - 150				09/14/20 17:09	09/15/20 18:31	1	
13C6 PFDA	86		50 - 150				09/14/20 17:09	09/15/20 18:31	1	
13C2-PFDoDA	81		50 - 150				09/14/20 17:09	09/15/20 18:31	1	
13C5 PFHxA	97		50 - 150				09/14/20 17:09	09/15/20 18:31	1	
13C7 PFUnA	82		50 - 150				09/14/20 17:09	09/15/20 18:31	1	
13C8 PFOA	106		50 - 150				09/14/20 17:09	09/15/20 18:31	1	
13C9 PFNA	98		50 - 150				09/14/20 17:09	09/15/20 18:31	1	
13C3 PFHxS	109		50 - 150				09/14/20 17:09	09/15/20 18:31	1	
13C8 PFOS	97		50 - 150				09/14/20 17:09	09/15/20 18:31	1	

Client Sample ID: SB-5A-80

Date Collected: 09/09/20 07:39 Date Received: 09/10/20 11:05

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	ND	2.1		ug/Kg	₩ Ø	09/17/20 18:17	09/23/20 02:02	1
Perfluoropentanoic acid (PFPeA)	7.4	0.62		ug/Kg	¢	09/17/20 18:17	09/23/20 02:02	1
Perfluorohexanoic acid (PFHxA)	6.4	0.62		ug/Kg	₿	09/17/20 18:17	09/23/20 02:02	1
Perfluoroheptanoic acid (PFHpA)	2.8	0.62		ug/Kg	₿	09/17/20 18:17	09/23/20 02:02	1
Perfluorooctanoic acid (PFOA)	ND	0.62		ug/Kg	¢	09/17/20 18:17	09/23/20 02:02	1
Perfluorononanoic acid (PFNA)	ND	0.62		ug/Kg	₿	09/17/20 18:17	09/23/20 02:02	1
Perfluorodecanoic acid (PFDA)	ND	0.62		ug/Kg	₿	09/17/20 18:17	09/23/20 02:02	1
Perfluoroundecanoic acid (PFUnA)	ND	0.62		ug/Kg	¢	09/17/20 18:17	09/23/20 02:02	1
Perfluorododecanoic acid (PFDoA)	ND	0.62		ug/Kg	₿	09/17/20 18:17	09/23/20 02:02	1
Perfluorotridecanoic acid (PFTriA)	ND	0.62		ug/Kg	₿	09/17/20 18:17	09/23/20 02:02	1
Perfluorotetradecanoic acid (PFTeA)	ND	0.62		ug/Kg	₿	09/17/20 18:17	09/23/20 02:02	1
Perfluorobutanesulfonic acid (PFBS)	ND	2.1		ug/Kg	₿	09/17/20 18:17	09/23/20 02:02	1
Perfluoropentanesulfonic acid (PFPeS)	ND	3.1		ug/Kg	¢	09/17/20 18:17	09/23/20 02:02	1
Perfluorohexanesulfonic acid (PFHxS)	ND	0.62		ug/Kg	₿	09/17/20 18:17	09/23/20 02:02	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND	0.62		ug/Kg	¢	09/17/20 18:17	09/23/20 02:02	1
Perfluorooctanesulfonic acid (PFOS)	ND	0.62		ug/Kg	₿	09/17/20 18:17	09/23/20 02:02	1
Perfluorodecanesulfonic acid (PFDS)	ND	0.62		ug/Kg	₿	09/17/20 18:17	09/23/20 02:02	1
Perfluorooctanesulfonamide (FOSA)	ND	0.62		ug/Kg	¢	09/17/20 18:17	09/23/20 02:02	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND	2.1		ug/Kg	¢	09/17/20 18:17	09/23/20 02:02	1

Job ID: 320-64470-1

Lab Sample ID: 320-64470-6

Lab Sample ID: 320-64470-7

Matrix: Solid

Percent Solids: 95.1

Matrix: Water

5

6

12 13

Client: Geosyntec Consultants, Inc. Project/Site: PFAS - Hollywood Burbank Airport

Client Sample ID: SB-5A-80 Date Collected: 09/09/20 07:39 Date Received: 09/10/20 11:05

Job	١D·	320-64470-1	
000	ıD.	520-04-10-1	

Lab Sample ID: 320-64470-7 Matrix: Solid

Percent Solids: 95.1

-		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
N-methylperfluorooctanesulfonamidoa	ND		2.1		ug/Kg	¢	09/17/20 18:17	09/23/20 02:02	1
4:2 FTS	ND		2.1		ug/Kg	₽	09/17/20 18:17	09/23/20 02:02	1
6:2 FTS	ND		2.1		ug/Kg	₽	09/17/20 18:17	09/23/20 02:02	1
8:2 FTS	ND		3.1		ug/Kg	¢	09/17/20 18:17	09/23/20 02:02	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	100		50 - 150				09/17/20 18:17	09/23/20 02:02	1
13C5 PFPeA	98		50 - 150				09/17/20 18:17	09/23/20 02:02	1
13C4 PFHpA	94		50 - 150				09/17/20 18:17	09/23/20 02:02	1
13C2 PFTeDA	98		50 - 150				09/17/20 18:17	09/23/20 02:02	1
13C3 PFBS	98		50 - 150				09/17/20 18:17	09/23/20 02:02	1
13C8 FOSA	98		50 - 150				09/17/20 18:17	09/23/20 02:02	1
M2-6:2 FTS	104		50 - 150				09/17/20 18:17	09/23/20 02:02	1
M2-4:2 FTS	88		50 - 150				09/17/20 18:17	09/23/20 02:02	1
M2-8:2 FTS	111		50 - 150				09/17/20 18:17	09/23/20 02:02	1
d5-NEtFOSAA	96		50 - 150				09/17/20 18:17	09/23/20 02:02	1
d3-NMeFOSAA	92		50 - 150				09/17/20 18:17	09/23/20 02:02	1
13C6 PFDA	99		50 - 150				09/17/20 18:17	09/23/20 02:02	1
13C2-PFDoDA	97		50 - 150				09/17/20 18:17	09/23/20 02:02	1
13C5 PFHxA	95		50 - 150				09/17/20 18:17	09/23/20 02:02	1
13C7 PFUnA	102		50 - 150				09/17/20 18:17	09/23/20 02:02	1
13C8 PFOA	98		50 - 150				09/17/20 18:17	09/23/20 02:02	1
13C9 PFNA	99		50 - 150				09/17/20 18:17	09/23/20 02:02	1
13C3 PFHxS	99		50 - 150				09/17/20 18:17	09/23/20 02:02	1
13C8 PFOS	99		50 - 150				09/17/20 18:17	09/23/20 02:02	1
General Chemistry									
	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Analvte			1.0		%			09/15/20 20:21	1
Analyte Percent Moisture	4.9		-		%				-

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	ND	2.0		ug/Kg	<u></u>	09/17/20 18:17	09/23/20 02:11	1
Perfluoropentanoic acid (PFPeA)	7.7	0.61		ug/Kg	☆	09/17/20 18:17	09/23/20 02:11	1
Perfluorohexanoic acid (PFHxA)	7.2	0.61		ug/Kg	☆	09/17/20 18:17	09/23/20 02:11	1
Perfluoroheptanoic acid (PFHpA)	2.8	0.61		ug/Kg	¢	09/17/20 18:17	09/23/20 02:11	1
Perfluorooctanoic acid (PFOA)	ND	0.61		ug/Kg	☆	09/17/20 18:17	09/23/20 02:11	1
Perfluorononanoic acid (PFNA)	ND	0.61		ug/Kg	¢	09/17/20 18:17	09/23/20 02:11	1
Perfluorodecanoic acid (PFDA)	ND	0.61		ug/Kg	¢	09/17/20 18:17	09/23/20 02:11	1
Perfluoroundecanoic acid (PFUnA)	ND	0.61		ug/Kg	¢	09/17/20 18:17	09/23/20 02:11	1
Perfluorododecanoic acid (PFDoA)	ND	0.61		ug/Kg	¢	09/17/20 18:17	09/23/20 02:11	1
Perfluorotridecanoic acid (PFTriA)	ND	0.61		ug/Kg	¢	09/17/20 18:17	09/23/20 02:11	1
Perfluorotetradecanoic acid (PFTeA)	ND	0.61		ug/Kg	¢	09/17/20 18:17	09/23/20 02:11	1
Perfluorobutanesulfonic acid (PFBS)	ND	2.0		ug/Kg	¢	09/17/20 18:17	09/23/20 02:11	1

Client Sample ID: SB-5A-80-DUP Date Collected: 09/09/20 07:39 Date Received: 09/10/20 11:05

Lab Sample ID: 320-64470-8 Matrix: Solid

Percent Solids: 96.8

5

6

Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Perfluoropentanesulfonic acid (PFPeS)	ND		3.0		ug/Kg	¢	09/17/20 18:17	09/23/20 02:11	
Perfluorohexanesulfonic acid (PFHxS)	ND		0.61		ug/Kg	☆	09/17/20 18:17	09/23/20 02:11	
Perfluoroheptanesulfonic Acid (PFHpS)	ND		0.61		ug/Kg	₽	09/17/20 18:17	09/23/20 02:11	
Perfluorooctanesulfonic acid (PFOS)	ND		0.61		ug/Kg	₽	09/17/20 18:17	09/23/20 02:11	
Perfluorodecanesulfonic acid (PFDS)	ND		0.61		ug/Kg	☆	09/17/20 18:17	09/23/20 02:11	
Perfluorooctanesulfonamide (FOSA)	ND		0.61		ug/Kg	¢	09/17/20 18:17	09/23/20 02:11	
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		2.0		ug/Kg	¢	09/17/20 18:17	09/23/20 02:11	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		2.0		ug/Kg	¢	09/17/20 18:17	09/23/20 02:11	
4:2 FTS	ND		2.0		ug/Kg	☆	09/17/20 18:17	09/23/20 02:11	
3:2 FTS	ND		2.0		ug/Kg	¢	09/17/20 18:17	09/23/20 02:11	
3:2 FTS	ND		3.0		ug/Kg	¢	09/17/20 18:17	09/23/20 02:11	
sotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
13C4 PFBA	103		50 - 150				09/17/20 18:17	09/23/20 02:11	
13C5 PFPeA	103		50 - 150				09/17/20 18:17	09/23/20 02:11	
13C4 PFHpA	95		50 - 150				09/17/20 18:17	09/23/20 02:11	
13C2 PFTeDA	100		50 - 150				09/17/20 18:17	09/23/20 02:11	
I3C3 PFBS	100		50 - 150				09/17/20 18:17	09/23/20 02:11	
3C8 FOSA	100		50 - 150				09/17/20 18:17	09/23/20 02:11	
M2-6:2 FTS	106		50 - 150				09/17/20 18:17	09/23/20 02:11	
M2-4:2 FTS	89		50 - 150				09/17/20 18:17	09/23/20 02:11	
M2-8:2 FTS	109		50 - 150				09/17/20 18:17	09/23/20 02:11	
15-NEtFOSAA	94		50 - 150				09/17/20 18:17	09/23/20 02:11	
13-NMeFOSAA	95		50 - 150				09/17/20 18:17	09/23/20 02:11	
I3C6 PFDA	103		50 - 150				09/17/20 18:17	09/23/20 02:11	
13C2-PFDoDA	99		50 - 150				09/17/20 18:17	09/23/20 02:11	
13C5 PFHxA	95		50 - 150				09/17/20 18:17	09/23/20 02:11	
13C7 PFUnA	103		50 - 150				09/17/20 18:17	09/23/20 02:11	
13C8 PFOA	98		50 - 150				09/17/20 18:17	09/23/20 02:11	
13C9 PFNA	99		50 - 150				09/17/20 18:17	09/23/20 02:11	
13C3 PFHxS	98		50 - 150				09/17/20 18:17	09/23/20 02:11	
13C8 PFOS	97		50 - 150				09/17/20 18:17	09/23/20 02:11	
General Chemistry	Decult	Qualifian	ы	ы	11		Drepered	Anolymod	
Analyte Percent Moisture	3.2	Qualifier	RL	KL	Unit %	D	Prepared	Analyzed 09/15/20 20:21	Dil Fa
Percent Solids			1.0		%			09/15/20 20:21	
Percent Solids	96.8		1.0		70			09/13/20 20.21	
lient Sample ID: SB-5A-9	0					L	ab Sample.	e ID: 320-64	470-9
ate Collected: 09/09/20 08:45 ate Received: 09/10/20 11:05								Matrix Percent Solid	: Solid
Method: EPA 537 (Mod) - EPA									
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Perfluorobutanoic acid (PFBA)	ND		2.0		ug/Kg	¢	09/17/20 18:17	09/23/20 02:20	
Perfluoropentanoic acid (PFPeA)	2.6		0.60		ua/Ka	÷.	09/17/20 18:17	09/23/20 02:20	

		=		-		/	
Perfluorobutanoic acid (PFBA)	ND	2.0	ug/Kg	¢	09/17/20 18:17	09/23/20 02:20	1
Perfluoropentanoic acid (PFPeA)	2.6	0.60	ug/Kg	¢	09/17/20 18:17	09/23/20 02:20	1
Perfluorohexanoic acid (PFHxA)	3.0	0.60	ug/Kg	¢	09/17/20 18:17	09/23/20 02:20	1
Perfluoroheptanoic acid (PFHpA)	1.1	0.60	ug/Kg	¢	09/17/20 18:17	09/23/20 02:20	1

Client: Geosyntec Consultants, Inc. Project/Site: PFAS - Hollywood Burbank Airport

Client Sample ID: SB-5A-90 Date Collected: 09/09/20 08:45 Date Received: 09/10/20 11:05

Lab Sample ID: 320-64470-9 Matrix: Solid

Percent Solids: 97.9

5

Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Perfluorooctanoic acid (PFOA)	ND		0.60		ug/Kg	¢	09/17/20 18:17	09/23/20 02:20	1
Perfluorononanoic acid (PFNA)	ND		0.60		ug/Kg	¢	09/17/20 18:17	09/23/20 02:20	1
Perfluorodecanoic acid (PFDA)	ND		0.60		ug/Kg	₿	09/17/20 18:17	09/23/20 02:20	1
Perfluoroundecanoic acid (PFUnA)	ND		0.60		ug/Kg	¢	09/17/20 18:17	09/23/20 02:20	1
Perfluorododecanoic acid (PFDoA)	ND		0.60		ug/Kg	¢	09/17/20 18:17	09/23/20 02:20	1
Perfluorotridecanoic acid (PFTriA)	ND		0.60		ug/Kg	₽	09/17/20 18:17	09/23/20 02:20	1
Perfluorotetradecanoic acid (PFTeA)	ND		0.60		ug/Kg	₽	09/17/20 18:17	09/23/20 02:20	1
Perfluorobutanesulfonic acid (PFBS)	ND		2.0		ug/Kg	₽	09/17/20 18:17	09/23/20 02:20	1
Perfluoropentanesulfonic acid (PFPeS)	ND		3.0		ug/Kg	¢	09/17/20 18:17	09/23/20 02:20	1
Perfluorohexanesulfonic acid (PFHxS)	ND		0.60		ug/Kg	¢	09/17/20 18:17	09/23/20 02:20	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		0.60		ug/Kg	¢	09/17/20 18:17	09/23/20 02:20	1
Perfluorooctanesulfonic acid (PFOS)	ND		0.60		ug/Kg	¢	09/17/20 18:17	09/23/20 02:20	1
Perfluorodecanesulfonic acid (PFDS)	ND		0.60		ug/Kg	¢	09/17/20 18:17	09/23/20 02:20	1
Perfluorooctanesulfonamide (FOSA)	ND		0.60		ug/Kg	¢	09/17/20 18:17	09/23/20 02:20	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		2.0		ug/Kg	¢	09/17/20 18:17	09/23/20 02:20	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		2.0		ug/Kg	¢	09/17/20 18:17	09/23/20 02:20	1
4:2 FTS	ND		2.0		ug/Kg	₽	09/17/20 18:17	09/23/20 02:20	1
6:2 FTS	ND		2.0		ug/Kg	₽	09/17/20 18:17	09/23/20 02:20	1
8:2 FTS	ND		3.0		ug/Kg	₽	09/17/20 18:17	09/23/20 02:20	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	102		50 - 150				09/17/20 18:17	09/23/20 02:20	1
13C5 PFPeA	104		50 - 150				09/17/20 18:17	09/23/20 02:20	1
13C4 PFHpA	95		50 - 150				09/17/20 18:17	09/23/20 02:20	1
13C2 PFTeDA	94		50 - 150				09/17/20 18:17	09/23/20 02:20	1
13C3 PFBS	102		50 - 150				09/17/20 18:17	09/23/20 02:20	1
13C8 FOSA	101		50 - 150				09/17/20 18:17	09/23/20 02:20	1
M2-6:2 FTS	102		50 - 150				09/17/20 18:17	09/23/20 02:20	1
M2-4:2 FTS	96		50 - 150				09/17/20 18:17	09/23/20 02:20	1
M2-8:2 FTS	101		50 - 150				09/17/20 18:17	09/23/20 02:20	1
d5-NEtFOSAA	94		50 - 150				09/17/20 18:17	09/23/20 02:20	1
d3-NMeFOSAA	87		50 - 150				09/17/20 18:17	09/23/20 02:20	1
13C6 PFDA	99		50 - 150				09/17/20 18:17	09/23/20 02:20	1
13C2-PFDoDA	94		50 - 150				09/17/20 18:17	09/23/20 02:20	
13C5 PFHxA	97		50 - 150					09/23/20 02:20	1
13C7 PFUnA	100		50 - 150					09/23/20 02:20	1
13C8 PFOA	98		50 - 150					09/23/20 02:20	
13C9 PFNA	96		50 - 150					09/23/20 02:20	1
13C3 PFHxS	102		50 - 150					09/23/20 02:20	1
13C8 PFOS	102		50 - 150					09/23/20 02:20	1
General Chemistry									
· · · · · · · · · · · · · · · · · · ·				-	11	_	Drenerad	A	
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte Percent Moisture	Result 2.1	Qualifier	RL	RL	Unit %	<u>D</u>	Prepared	09/15/20 20:21	1 DII Fac

Client: Geosyntec Consultants, Inc. Project/Site: PFAS - Hollywood Burbank Airport

Client Sample ID: SB-5A-100 Date Collected: 09/09/20 09:47 Date Received: 09/10/20 11:05

Job	١D·	320-64470-1
000	ID.	020-04470-1

Lab Sample ID: 320-64470-10 Matrix: Solid

Percent Solids: 96.9

5

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	ND		2.0		ug/Kg	¢		09/23/20 02:29	1
Perfluoropentanoic acid (PFPeA)	3.3		0.61		ug/Kg	¢	09/17/20 18:17	09/23/20 02:29	1
Perfluorohexanoic acid (PFHxA)	5.5		0.61		ug/Kg	¢	09/17/20 18:17	09/23/20 02:29	1
Perfluoroheptanoic acid (PFHpA)	1.2		0.61		ug/Kg	¢	09/17/20 18:17	09/23/20 02:29	1
Perfluorooctanoic acid (PFOA)	ND		0.61		ug/Kg	¢	09/17/20 18:17	09/23/20 02:29	1
Perfluorononanoic acid (PFNA)	ND		0.61		ug/Kg	₽	09/17/20 18:17	09/23/20 02:29	1
Perfluorodecanoic acid (PFDA)	ND		0.61		ug/Kg	₿	09/17/20 18:17	09/23/20 02:29	1
Perfluoroundecanoic acid (PFUnA)	ND		0.61		ug/Kg	¢	09/17/20 18:17	09/23/20 02:29	1
Perfluorododecanoic acid (PFDoA)	ND		0.61		ug/Kg	¢	09/17/20 18:17	09/23/20 02:29	1
Perfluorotridecanoic acid (PFTriA)	ND		0.61		ug/Kg	¢	09/17/20 18:17	09/23/20 02:29	1
Perfluorotetradecanoic acid (PFTeA)	ND		0.61		ug/Kg	¢	09/17/20 18:17	09/23/20 02:29	1
Perfluorobutanesulfonic acid (PFBS)	ND		2.0		ug/Kg	₽	09/17/20 18:17	09/23/20 02:29	1
Perfluoropentanesulfonic acid PFPeS)	ND		3.0		ug/Kg	¢	09/17/20 18:17	09/23/20 02:29	1
Perfluorohexanesulfonic acid (PFHxS)	ND		0.61		ug/Kg	¢	09/17/20 18:17	09/23/20 02:29	1
Perfluoroheptanesulfonic Acid PFHpS)	ND		0.61		ug/Kg	¢	09/17/20 18:17	09/23/20 02:29	1
Perfluorooctanesulfonic acid (PFOS)	ND		0.61		ug/Kg	₽	09/17/20 18:17	09/23/20 02:29	1
Perfluorodecanesulfonic acid (PFDS)	ND		0.61		ug/Kg	¢	09/17/20 18:17	09/23/20 02:29	1
Perfluorooctanesulfonamide (FOSA)	ND		0.61		ug/Kg	¢	09/17/20 18:17	09/23/20 02:29	1
I-ethylperfluorooctanesulfonamidoac tic acid (NEtFOSAA)	ND		2.0		ug/Kg	¢	09/17/20 18:17	09/23/20 02:29	
N-methylperfluorooctanesulfonamidoa etic acid (NMeFOSAA)	ND		2.0		ug/Kg	¢	09/17/20 18:17	09/23/20 02:29	
2 FTS	ND		2.0		ug/Kg	¢	09/17/20 18:17	09/23/20 02:29	1
2 FTS	ND		2.0		ug/Kg	¢	09/17/20 18:17	09/23/20 02:29	1
3:2 FTS	ND		3.0		ug/Kg	¢	09/17/20 18:17	09/23/20 02:29	1
sotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
3C4 PFBA	92		50 - 150				09/17/20 18:17	09/23/20 02:29	
3C5 PFPeA	91		50 - 150				09/17/20 18:17	09/23/20 02:29	1
3C4 PFHpA	84		50 - 150				09/17/20 18:17	09/23/20 02:29	1
3C2 PFTeDA	87		50 - 150				09/17/20 18:17	09/23/20 02:29	
3C3 PFBS	94		50 - 150				09/17/20 18:17	09/23/20 02:29	1
3C8 FOSA	94		50 - 150				09/17/20 18:17	09/23/20 02:29	1
12-6:2 FTS	93		50 - 150				09/17/20 18:17	09/23/20 02:29	1
12-4:2 FTS	83		50 - 150				09/17/20 18:17	09/23/20 02:29	
12-8:2 FTS	98		50 - 150				09/17/20 18:17	09/23/20 02:29	
15-NEtFOSAA	81		50 - 150					09/23/20 02:29	
I3-NMeFOSAA	75		50 - 150					09/23/20 02:29	
3C6 PFDA	92		50 - 150					09/23/20 02:29	
3C2-PFDoDA	87		50 - 150 50 - 150					09/23/20 02:29	
3C5 PFHxA	86		50 - 150 50 - 150					09/23/20 02:29	
3C7 PFUnA	91		50 - 150 50 - 150					09/23/20 02:29	
3C8 PFOA								09/23/20 02:29	
	91		50 - 150 50 - 150						
13C9 PFNA	90		50 - 150					09/23/20 02:29	
13C3 PFHxS	90		50 - 150				09/17/20 18:17	09/23/20 02:29	

Client: Geosyntec Consultants, Inc. Project/Site: PFAS - Hollywood Burbank Airport

Client Sample ID: SB-5A-100 Date Collected: 09/09/20 09:47

Date Collected: 09/09/20 09:47	
Date Received: 09/10/20 11:05	

General Chemistry Analyte	Result Qualifier	RL	RL Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	3.1	1.0				09/15/20 20:21	1
Percent Solids	96.9	1.0	%			09/15/20 20:21	1

Client Sample ID: SB-5A-110 Date Collected: 09/09/20 13:09 Date Received: 09/10/20 11:05

Lab Sample ID: 320-64470-11 Matrix: Solid

Lab Sample ID: 320-64470-10

Percent Solids: 96.7

Job ID: 320-64470-1

Percent Solids: 96.9

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	ND		2.0		ug/Kg	¢	09/17/20 18:17	09/23/20 02:38	1
Perfluoropentanoic acid (PFPeA)	3.7		0.60		ug/Kg	¢	09/17/20 18:17	09/23/20 02:38	1
Perfluorohexanoic acid (PFHxA)	2.8		0.60		ug/Kg	¢	09/17/20 18:17	09/23/20 02:38	1
Perfluoroheptanoic acid (PFHpA)	ND		0.60		ug/Kg	₿	09/17/20 18:17	09/23/20 02:38	1
Perfluorooctanoic acid (PFOA)	ND		0.60		ug/Kg	¢	09/17/20 18:17	09/23/20 02:38	1
Perfluorononanoic acid (PFNA)	ND		0.60		ug/Kg	¢	09/17/20 18:17	09/23/20 02:38	1
Perfluorodecanoic acid (PFDA)	ND		0.60		ug/Kg	₿	09/17/20 18:17	09/23/20 02:38	1
Perfluoroundecanoic acid (PFUnA)	ND		0.60		ug/Kg	¢	09/17/20 18:17	09/23/20 02:38	1
Perfluorododecanoic acid (PFDoA)	ND		0.60		ug/Kg	₿	09/17/20 18:17	09/23/20 02:38	1
Perfluorotridecanoic acid (PFTriA)	ND		0.60		ug/Kg	¢	09/17/20 18:17	09/23/20 02:38	1
Perfluorotetradecanoic acid (PFTeA)	ND		0.60		ug/Kg	¢	09/17/20 18:17	09/23/20 02:38	1
Perfluorobutanesulfonic acid (PFBS)	ND		2.0		ug/Kg	¢	09/17/20 18:17	09/23/20 02:38	1
Perfluoropentanesulfonic acid PFPeS)	ND		3.0		ug/Kg	¢	09/17/20 18:17	09/23/20 02:38	1
Perfluorohexanesulfonic acid (PFHxS)	ND		0.60		ug/Kg	¢	09/17/20 18:17	09/23/20 02:38	1
Perfluoroheptanesulfonic Acid PFHpS)	ND		0.60		ug/Kg	¢	09/17/20 18:17	09/23/20 02:38	1
Perfluorooctanesulfonic acid (PFOS)	ND		0.60		ug/Kg	☆	09/17/20 18:17	09/23/20 02:38	1
Perfluorodecanesulfonic acid (PFDS)	ND		0.60		ug/Kg	¢	09/17/20 18:17	09/23/20 02:38	1
Perfluorooctanesulfonamide (FOSA)	ND		0.60		ug/Kg	¢	09/17/20 18:17	09/23/20 02:38	1
I-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		2.0		ug/Kg	¢	09/17/20 18:17	09/23/20 02:38	1
N-methylperfluorooctanesulfonamidoa etic acid (NMeFOSAA)	ND		2.0		ug/Kg	☆	09/17/20 18:17	09/23/20 02:38	1
1:2 FTS	ND		2.0		ug/Kg	₿	09/17/20 18:17	09/23/20 02:38	1
2:2 FTS	ND		2.0		ug/Kg	₽	09/17/20 18:17	09/23/20 02:38	1
3:2 FTS	ND		3.0		ug/Kg	₽	09/17/20 18:17	09/23/20 02:38	1
sotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
3C4 PFBA	99		50 - 150				09/17/20 18:17	09/23/20 02:38	1
3C5 PFPeA	98		50 - 150				09/17/20 18:17	09/23/20 02:38	1
3C4 PFHpA	90		50 - 150				09/17/20 18:17	09/23/20 02:38	1
3C2 PFTeDA	96		50 - 150				09/17/20 18:17	09/23/20 02:38	1
3C3 PFBS	100		50 - 150				09/17/20 18:17	09/23/20 02:38	1
3C8 FOSA	100		50 - 150				09/17/20 18:17	09/23/20 02:38	1
12-6:2 FTS	101		50 - 150				09/17/20 18:17	09/23/20 02:38	1
12-4:2 FTS	92		50 - 150				09/17/20 18:17	09/23/20 02:38	1
12-8:2 FTS	112		50 - 150				09/17/20 18:17	09/23/20 02:38	1
15-NEtFOSAA	86		50 - 150				09/17/20 18:17	09/23/20 02:38	1
3-NMeFOSAA	83		50 - 150				09/17/20 18:17	09/23/20 02:38	1
3C6 PFDA	101		50 - 150				09/17/20 18:17	09/23/20 02:38	1
3C2-PFDoDA	93		50 - 150				09/17/20 18:17	09/23/20 02:38	1
13C5 PFHxA	93		50 - 150					09/23/20 02:38	1

Eurofins TestAmerica, Sacramento

Job ID: 320-64470-1

Matrix: Solid

Lab Sample ID: 320-64470-11

Client Sample ID: SB-5A-110 Date Collected: 09/09/20 13:09 Date Received: 09/10/20 11:05

Method: EPA 537 (Mod) - EPA	537 mod 09	M 5 1 Tak	B-15 (Cor	tinued)				
Isotope Dilution	%Recovery		Limits	illillueu)		Prepared	Analyzed	Dil Fa
13C7 PFUnA	103	quamo	50 - 150				09/23/20 02:38	
13C8 PFOA	97		50 - 150				09/23/20 02:38	
13C9 PFNA	99		50 - 150				09/23/20 02:38	
13C3 PFHxS	98		50 - 150				09/23/20 02:38	
13C8 PFOS	90 101		50 - 150 50 - 150				09/23/20 02:38	
General Chemistry								
Analyte	Result (Qualifier	RL	RL Unit	D	Prepared	Analyzed	Dil Fa
Percent Moisture	3.3		1.0	%		·	09/15/20 20:21	
Percent Solids	96.7		1.0	%			09/15/20 20:21	
Client Sample ID: SB-5A-1	20				La	ab Sample	ID: 320-644	70-12
Date Collected: 09/09/20 14:50						-	Matrix	c: Solic
Date Received: 09/10/20 11:05							Percent Solid	ls: 98.7
	507 m a d 00		D 45					
Method: EPA 537 (Mod) - EPA Analyte	S37 mod QS Result (RL	MDL Unit	D	Prepared	Analyzed	Dil Fa
Perfluorobutanoic acid (PFBA)	ND	Juaimer	2.0			•	09/23/20 02:47	
. ,				ug/K	-		09/23/20 02:47	
Perfluoropentanoic acid (PFPeA)	2.9		0.60	ug/K	-			
Perfluorohexanoic acid (PFHxA)	2.4		0.60	ug/K			09/23/20 02:47	
Perfluoroheptanoic acid (PFHpA)	ND		0.60	ug/K	-		09/23/20 02:47	
Perfluorooctanoic acid (PFOA)	ND		0.60	ug/K	-		09/23/20 02:47	
Perfluorononanoic acid (PFNA)	ND		0.60	ug/K	• • • • • • • • • • •		09/23/20 02:47	
Perfluorodecanoic acid (PFDA)	ND		0.60	ug/K	-	09/17/20 18:17	09/23/20 02:47	
Perfluoroundecanoic acid (PFUnA)	ND		0.60	ug/K	g ☆	09/17/20 18:17	09/23/20 02:47	
Perfluorododecanoic acid (PFDoA)	ND		0.60	ug/K	g ☆	09/17/20 18:17	09/23/20 02:47	
Perfluorotridecanoic acid (PFTriA)	ND		0.60	ug/K	g ☆	09/17/20 18:17	09/23/20 02:47	
Perfluorotetradecanoic acid (PFTeA)	ND		0.60	ug/K	g ☆	09/17/20 18:17	09/23/20 02:47	
Perfluorobutanesulfonic acid (PFBS)	ND		2.0	ug/K	g ☆	09/17/20 18:17	09/23/20 02:47	
Perfluoropentanesulfonic acid (PFPeS)	ND		3.0	ug/K	g ☆	09/17/20 18:17	09/23/20 02:47	
Perfluorohexanesulfonic acid (PFHxS)	ND		0.60	ug/K	g ☆	09/17/20 18:17	09/23/20 02:47	
Perfluoroheptanesulfonic Acid (PFHpS)	ND		0.60	ug/K	g 🌣	09/17/20 18:17	09/23/20 02:47	
Perfluorooctanesulfonic acid (PFOS)	ND		0.60	ug/K	a ☆	09/17/20 18:17	09/23/20 02:47	
Perfluorodecanesulfonic acid (PFDS)	ND		0.60	ug/K	-	09/17/20 18:17	09/23/20 02:47	
Perfluorooctanesulfonamide (FOSA)	ND		0.60	ug/K			09/23/20 02:47	
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		2.0	ug/K		09/17/20 18:17		
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		2.0	ug/K	g ☆	09/17/20 18:17	09/23/20 02:47	
4:2 FTS	ND		2.0	ug/K	a v	09/17/20 18:17	09/23/20 02.47	
6:2 FTS	ND		2.0	ug/K	•		09/23/20 02:47	
8:2 FTS	ND		3.0	ug/K			09/23/20 02:47	
Isotope Dilution	%Recovery	Qualifier	Limits	ug/N	J *	Prepared	Analyzed	Dil Fa
13C4 PFBA	102		50 - 150				09/23/20 02:47	2.110
13C5 PFPeA	102		50 - 150				09/23/20 02:47	
13C4 PFHpA	92		50 - 150 50 - 150				09/23/20 02:47	
13C4 PFTeDA	92 99		50 - 150 50 - 150				09/23/20 02:47	
	99 102		50 - 150 50 - 150				09/23/20 02:47	
13C3 PFBS								

Limits

50 - 150

50 - 150

50 - 150

Client: Geosyntec Consultants, Inc. Project/Site: PFAS - Hollywood Burbank Airport

Client Sample ID: SB-5A-120 Date Collected: 09/09/20 14:50 Date Received: 09/10/20 11:05

Isotope Dilution

M2-6:2 FTS

M2-4:2 FTS

M2-8:2 FTS

Job ID: 320-64470-1

Lab Sample ID: 320-64470-12

b Sample	ID: 320-644 Matrix		
	Percent Solid	s: 98.7	
Prepared	Analyzed	Dil Fac	5
09/17/20 18:17	09/23/20 02:47	1	
09/17/20 18:17	09/23/20 02:47	1	6
09/17/20 18:17	09/23/20 02:47	1	
09/17/20 18:17	09/23/20 02:47	1	
09/17/20 18:17	09/23/20 02:47	1	
09/17/20 18:17	09/23/20 02:47	1	2
09/17/20 18:17	09/23/20 02:47	1	0
09/17/20 18:17	09/23/20 02:47	1	0
09/17/20 18:17	09/23/20 02:47	1	3
09/17/20 18:17	09/23/20 02:47	1	
09/17/20 18:17	09/23/20 02:47	1	
09/17/20 18:17	09/23/20 02:47	1	
09/17/20 18:17	09/23/20 02:47	1	
Prepared	Analyzed	Dil Fac	
	09/15/20 20:21	1	13
	09/15/20 20:21	1	

Method: EPA 537 (Mod) - EPA 537 mod QSM 5.1, Table B-15 (Continued)

%Recovery Qualifier

106

95

102

Percent Solids	98.7	1.0		%			09/15/20 20:21	1
Percent Moisture	1.3	1.0		%			09/15/20 20:21	1
Analyte	Result Qu	ualifier RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
General Chemistry								
13C8 PFOS	100	50 - 150				09/17/20 18:17	09/23/20 02:47	1
13C3 PFHxS	98	50 - 150				09/17/20 18:17	09/23/20 02:47	1
13C9 PFNA	101	50 - 150				09/17/20 18:17	09/23/20 02:47	1
13C8 PFOA	103	50 - 150				09/17/20 18:17	09/23/20 02:47	1
13C7 PFUnA	100	50 - 150				09/17/20 18:17	09/23/20 02:47	1
13C5 PFHxA	97	50 - 150				09/17/20 18:17	09/23/20 02:47	1
13C2-PFDoDA	96	50 - 150				09/17/20 18:17	09/23/20 02:47	1
13C6 PFDA	96	50 - 150				09/17/20 18:17	09/23/20 02:47	1
d3-NMeFOSAA	87	50 - 150				09/17/20 18:17	09/23/20 02:47	1
d5-NEtFOSAA	88	50 - 150				09/17/20 18:17	09/23/20 02:47	1

Client Sample ID: SB-5A-130 Date Collected: 09/09/20 15:35

Date Received: 09/10/20 11:05

Lab Sample ID: 320-64470-13

Matrix: Solid Percent Solids: 84.8

Method: EPA 537 (Mod) - EPA 53	7 mod QSM 5.1, Tabl	le B-15					
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	ND	2.3	ug/Kg	¢	09/17/20 18:17	09/23/20 03:05	1
Perfluoropentanoic acid (PFPeA)	ND	0.69	ug/Kg	¢	09/17/20 18:17	09/23/20 03:05	1
Perfluorohexanoic acid (PFHxA)	ND	0.69	ug/Kg	¢	09/17/20 18:17	09/23/20 03:05	1
Perfluoroheptanoic acid (PFHpA)	ND	0.69	ug/Kg	₽	09/17/20 18:17	09/23/20 03:05	1
Perfluorooctanoic acid (PFOA)	ND	0.69	ug/Kg	¢	09/17/20 18:17	09/23/20 03:05	1
Perfluorononanoic acid (PFNA)	ND	0.69	ug/Kg	₽	09/17/20 18:17	09/23/20 03:05	1
Perfluorodecanoic acid (PFDA)	ND	0.69	ug/Kg	₽	09/17/20 18:17	09/23/20 03:05	1
Perfluoroundecanoic acid (PFUnA)	ND	0.69	ug/Kg	₽	09/17/20 18:17	09/23/20 03:05	1
Perfluorododecanoic acid (PFDoA)	ND	0.69	ug/Kg	₽	09/17/20 18:17	09/23/20 03:05	1
Perfluorotridecanoic acid (PFTriA)	ND	0.69	ug/Kg	₽	09/17/20 18:17	09/23/20 03:05	1
Perfluorotetradecanoic acid (PFTeA)	ND	0.69	ug/Kg	₽	09/17/20 18:17	09/23/20 03:05	1
Perfluorobutanesulfonic acid (PFBS)	ND	2.3	ug/Kg	₽	09/17/20 18:17	09/23/20 03:05	1
Perfluoropentanesulfonic acid (PFPeS)	ND	3.4	ug/Kg	¢	09/17/20 18:17	09/23/20 03:05	1
Perfluorohexanesulfonic acid (PFHxS)	ND	0.69	ug/Kg	¢	09/17/20 18:17	09/23/20 03:05	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND	0.69	ug/Kg	¢	09/17/20 18:17	09/23/20 03:05	1
Perfluorooctanesulfonic acid (PFOS)	ND	0.69	ug/Kg	₽	09/17/20 18:17	09/23/20 03:05	1
Perfluorodecanesulfonic acid (PFDS)	ND	0.69	ug/Kg	₽	09/17/20 18:17	09/23/20 03:05	1
Perfluorooctanesulfonamide (FOSA)	ND	0.69	ug/Kg	₽	09/17/20 18:17	09/23/20 03:05	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND	2.3	ug/Kg	¢	09/17/20 18:17	09/23/20 03:05	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND	2.3	ug/Kg	¢	09/17/20 18:17	09/23/20 03:05	1
4:2 FTS	ND	2.3	ug/Kg	₽	09/17/20 18:17	09/23/20 03:05	1
6:2 FTS	ND	2.3	ug/Kg	¢	09/17/20 18:17	09/23/20 03:05	1

Client Sample ID: SB-5A-130 Date Collected: 09/09/20 15:35 Date Received: 09/10/20 11:05

Job ID: 320-64470-1

Lab Sample ID: 320-64470-13 Matrix: Solid

Percent Solids: 84.8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
8:2 FTS	ND		3.4		ug/Kg	¢	09/17/20 18:17	09/23/20 03:05	1	-
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	6
13C4 PFBA	99		50 - 150				09/17/20 18:17	09/23/20 03:05	1	
13C5 PFPeA	95		50 - 150				09/17/20 18:17	09/23/20 03:05	1	
13C4 PFHpA	91		50 - 150				09/17/20 18:17	09/23/20 03:05	1	
13C2 PFTeDA	103		50 - 150				09/17/20 18:17	09/23/20 03:05	1	
13C3 PFBS	99		50 - 150				09/17/20 18:17	09/23/20 03:05	1	
13C8 FOSA	99		50 - 150				09/17/20 18:17	09/23/20 03:05	1	
M2-6:2 FTS	104		50 - 150				09/17/20 18:17	09/23/20 03:05	1	
M2-4:2 FTS	94		50 - 150				09/17/20 18:17	09/23/20 03:05	1	
M2-8:2 FTS	114		50 - 150				09/17/20 18:17	09/23/20 03:05	1	
d5-NEtFOSAA	103		50 - 150				09/17/20 18:17	09/23/20 03:05	1	
d3-NMeFOSAA	99		50 - 150				09/17/20 18:17	09/23/20 03:05	1	
13C6 PFDA	106		50 - 150				09/17/20 18:17	09/23/20 03:05	1	
13C2-PFDoDA	97		50 - 150				09/17/20 18:17	09/23/20 03:05	1	
13C5 PFHxA	96		50 - 150				09/17/20 18:17	09/23/20 03:05	1	
13C7 PFUnA	107		50 - 150				09/17/20 18:17	09/23/20 03:05	1	
13C8 PFOA	100		50 - 150				09/17/20 18:17	09/23/20 03:05	1	
13C9 PFNA	94		50 - 150				09/17/20 18:17	09/23/20 03:05	1	
13C3 PFHxS	96		50 - 150				09/17/20 18:17	09/23/20 03:05	1	
13C8 PFOS	95		50 - 150				09/17/20 18:17	09/23/20 03:05	1	
General Chemistry										
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac	
Percent Moisture	15.2		1.0		%			09/15/20 20:21	1	
Percent Solids	84.8		1.0		%			09/15/20 20:21	1	

Isotope Dilution Summary

Client: Geosyntec Consultants, Inc. Project/Site: PFAS - Hollywood Burbank Airport

Method: EPA 537 (Mod) - EPA 537 mod QSM 5.1, Table B-15 Matrix: Solid

PFBA **PFPeA** C4PFHA PFTDA C3PFBS PFOSA M262FTS M242FTS **Client Sample ID** (50-150)(50-150) (50-150) (50 - 150)(50 - 150)(50 - 150)(50-150) (50-150) Lab Sample ID 320-64470-3 SB-5A-60 320-64470-4 SB-5A-70 320-64470-4 MS SB-5A-70 320-64470-4 MSD SB-5A-70 320-64470-7 SB-5A-80 320-64470-8 SB-5A-80-DUP 320-64470-9 SB-5A-90 320-64470-10 SB-5A-100 320-64470-11 SB-5A-110 320-64470-12 SB-5A-120 320-64470-13 SB-5A-130 LCS 410-45095/2-B Lab Control Sample Method Blank MB 410-45095/1-B Percent Isotope Dilution Recovery (Acceptance Limits) M282FTS d5NEFOS d3NMFOS C6PFDA **PFDoDA** 13C5PHA 13C7PUA C8PFOA (50-150) (50-150) (50-150) (50-150)(50-150)(50 - 150)(50 - 150)(50 - 150)Lab Sample ID **Client Sample ID** 320-64470-3 SB-5A-60 320-64470-4 SB-5A-70 320-64470-4 MS SB-5A-70 320-64470-4 MSD SB-5A-70 320-64470-7 SB-5A-80 320-64470-8 SB-5A-80-DUP 320-64470-9 SB-5A-90 320-64470-10 SB-5A-100 320-64470-11 SB-5A-110 320-64470-12 SB-5A-120 320-64470-13 SB-5A-130 LCS 410-45095/2-B Lab Control Sample MB 410-45095/1-B Method Blank Percent Isotope Dilution Recovery (Acceptance Limits) C9PFNA C3PFHS C8PFOS Lab Sample ID **Client Sample ID** (50 - 150)(50 - 150)(50 - 150)320-64470-3 SB-5A-60 320-64470-4 SB-5A-70 320-64470-4 MS SB-5A-70 320-64470-4 MSD SB-5A-70 320-64470-7 SB-5A-80 SB-5A-80-DUP 320-64470-8 320-64470-9 SB-5A-90 320-64470-10 SB-5A-100 320-64470-11 SB-5A-110 320-64470-12 SB-5A-120 320-64470-13 SB-5A-130 LCS 410-45095/2-B Lab Control Sample MB 410-45095/1-B Method Blank

Surrogate Legend PFBA = 13C4 PFBA

PFPeA = 13C5 PFPeA

Prep Type: Total/NA

Percent Isotope Dilution Recovery (Acceptance Limits)

Isotope Dilution Summary

Client: Geosyntec Consultants, Inc.

Project/Site: PFAS - Hollywood Burbank Airport

C4PFHA = 13C4 PFHpA
PFTDA = 13C2 PFTeDA
C3PFBS = 13C3 PFBS
PFOSA = 13C8 FOSA
M262FTS = M2-6:2 FTS
M242FTS = M2-4:2 FTS
M282FTS = M2-8:2 FTS
d5NEFOS = d5-NEtFOSAA
d3NMFOS = d3-NMeFOSAA
C6PFDA = 13C6 PFDA
PFDoDA = 13C2-PFDoDA
13C5PHA = 13C5 PFHxA
13C7PUA = 13C7 PFUnA
C8PFOA = 13C8 PFOA
C9PFNA = 13C9 PFNA
C3PFHS = 13C3 PFHxS
C8PFOS = 13C8 PFOS

Method: EPA 537 (Mod) - EPA 537 mod QSM 5.1, Table B-15 Matrix: Water

			Perc	ent Isotope	Dilution Re	covery (Ac	ceptance L	imits)	
		PFBA	PFPeA	C4PFHA	PFTDA	C3PFBS	PFOSA	M262FTS	M242FTS
Lab Sample ID	Client Sample ID	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)
320-64470-1	EB-200208	116	127	151 *5	78	117	3 *5	203 *5	237 *5
320-64470-2	FB-200208	92	98	103	65	99	58	103	94
320-64470-2 - DL	FB-200208								
320-64470-5	EB-200209	87	95	92	58	95	54	100	93
320-64470-6	FB-200209	99	104	104	73	106	68	115	111
LCS 410-43643/2-A	Lab Control Sample	86	92	96	62	93	60	99	86
MB 410-43643/1-A	Method Blank	102	111	105	82	109	73	119	111
			Perce	ent Isotope	Dilution Re	ecovery (Ac	ceptance L	imits)	
		M282FTS	d5NEFOS	d3NMFOS	C6PFDA	PFDoDA	13C5PHA	13C7PUA	C8PFOA
Lab Sample ID	Client Sample ID	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)
320-64470-1	EB-200208	121	93	84	90	68	118	82	120
320-64470-2	FB-200208	78	70	78	77	70	93	71	100
320-64470-2 - DL	FB-200208								117
320-64470-5	EB-200209	75	73	74	75	67	91	77	95
320-64470-6	FB-200209	91	77	78	86	81	97	82	106
LCS 410-43643/2-A	Lab Control Sample	74	68	73	76	69	87	69	96
MB 410-43643/1-A	Method Blank	91	88	86	89	87	101	89	110
			Perce	ent Isotope	Dilution Re	covery (Ac	ceptance L	imits)	
		C9PFNA	C3PFHS	C8PFOS					
Lab Sample ID	Client Sample ID	(50-150)	(50-150)	(50-150)					
320-64470-1	EB-200208	183 *5	103	122					
320-64470-2	FB-200208	88	103	87					
320-64470-2 - DL	FB-200208								
320-64470-5	EB-200209	89	94	88					
320-64470-6	FB-200209	98	109	97					
LCS 410-43643/2-A	Lab Control Sample	89	94	89					
MB 410-43643/1-A	Method Blank	101	111	105					
Surrogate Legend									
PFBA = 13C4 PFBA									

PFBA = 13C4 PFBA PFPeA = 13C5 PFPeA

C4PFHA = 13C4 PFHpA

Prep Type: Total/NA

Isotope Dilution Summary

Client: Geosyntec Consultants, Inc. Project/Site: PFAS - Hollywood Burbank Airport PFTDA = 13C2 PFTeDA C3PFBS = 13C3 PFBS PFOSA = 13C8 FOSA M262FTS = M2-6:2 FTS M242FTS = M2-4:2 FTS M282FTS = M2-8:2 FTS d5NEFOS = d5-NEtFOSAA d3NMFOS = d3-NMeFOSAA C6PFDA = 13C6 PFDA PFDoDA = 13C2-PFDoDA 13C5PHA = 13C5 PFHxA 13C7PUA = 13C7 PFUnA C8PFOA = 13C8 PFOA C9PFNA = 13C9 PFNA C3PFHS = 13C3 PFHxS C8PFOS = 13C8 PFOS

5

8 9

Project/Site: PFAS - Hollywood Burbank Airport

Method: EPA 537 (Mod) - EPA 537 mod QSM 5.1, Table B-15

Lab Sample ID: MB 410-43643/1-A Matrix: Water Analysis Batch: 43906

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 43643

Analysis Batom 40000	МВ	MB					Top Batom	
Analyte		Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	ND		5.0	ng/L		09/14/20 17:09	09/15/20 21:50	1
Perfluoropentanoic acid (PFPeA)	ND		2.0	ng/L		09/14/20 17:09	09/15/20 21:50	1
Perfluorohexanoic acid (PFHxA)	ND		2.0	ng/L		09/14/20 17:09	09/15/20 21:50	1
Perfluoroheptanoic acid (PFHpA)	ND		2.0	ng/L		09/14/20 17:09	09/15/20 21:50	1
Perfluorooctanoic acid (PFOA)	ND		2.0	ng/L		09/14/20 17:09	09/15/20 21:50	1
Perfluorononanoic acid (PFNA)	ND		2.0	ng/L		09/14/20 17:09	09/15/20 21:50	1
Perfluorodecanoic acid (PFDA)	ND		2.0	ng/L		09/14/20 17:09	09/15/20 21:50	1
Perfluoroundecanoic acid (PFUnA)	ND		2.0	ng/L		09/14/20 17:09	09/15/20 21:50	1
Perfluorododecanoic acid (PFDoA)	ND		2.0	ng/L		09/14/20 17:09	09/15/20 21:50	1
Perfluorotridecanoic acid (PFTriA)	ND		2.0	ng/L		09/14/20 17:09	09/15/20 21:50	1
Perfluorotetradecanoic acid (PFTeA)	ND		2.0	ng/L		09/14/20 17:09	09/15/20 21:50	1
Perfluorobutanesulfonic acid (PFBS)	ND		2.0	ng/L		09/14/20 17:09	09/15/20 21:50	1
Perfluoropentanesulfonic acid (PFPeS)	ND		2.0	ng/L		09/14/20 17:09	09/15/20 21:50	1
Perfluorohexanesulfonic acid (PFHxS)	ND		2.0	ng/L		09/14/20 17:09	09/15/20 21:50	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		2.0	ng/L		09/14/20 17:09	09/15/20 21:50	1
Perfluorooctanesulfonic acid (PFOS)	ND		2.0	ng/L		09/14/20 17:09	09/15/20 21:50	1
Perfluorodecanesulfonic acid (PFDS)	ND		2.0	ng/L		09/14/20 17:09	09/15/20 21:50	1
Perfluorooctanesulfonamide (FOSA)	ND		2.0	ng/L		09/14/20 17:09	09/15/20 21:50	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		3.0	ng/L		09/14/20 17:09	09/15/20 21:50	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		2.0	ng/L		09/14/20 17:09	09/15/20 21:50	1
4:2 FTS	ND		2.0	ng/L		09/14/20 17:09	09/15/20 21:50	1
6:2 FTS	ND		5.0	ng/L		09/14/20 17:09	09/15/20 21:50	1
8:2 FTS	ND		3.0	ng/L		09/14/20 17:09	09/15/20 21:50	1
	MB	MB						
Isotope Dilution	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
13C4 PFBA	102		50 - 150			09/14/20 17:09	09/15/20 21:50	1
13C5 PFPeA	111		50 - 150			09/14/20 17:09	09/15/20 21:50	1
13C4 PFHpA	105		50 - 150			09/14/20 17:09	09/15/20 21:50	1
13C2 PFTeDA	82		50 - 150			09/14/20 17:09		1
13C3 PFBS	109		50 - 150			09/14/20 17:09	09/15/20 21:50	1
13C8 FOSA	73		50 - 150				09/15/20 21:50	1
M2-6:2 FTS	119		50 - 150				09/15/20 21:50	1
M2-4:2 FTS	111		50 - 150				09/15/20 21:50	1
M2-8:2 FTS	91		50 - 150				09/15/20 21:50	1
d5-NEtFOSAA	88		50 - 150				09/15/20 21:50	1
d3-NMeFOSAA	86		50 - 150				09/15/20 21:50	1
13C6 PFDA	89		50 - 150				09/15/20 21:50	1
13C2-PFDoDA	87		50 - 150				09/15/20 21:50	1
13C5 PFHxA	101		50 - 150				09/15/20 21:50	1
13C7 PFUnA	89		50 - 150				09/15/20 21:50	1
13C8 PFOA	110		50 - 150				09/15/20 21:50	1
13C9 PFNA	101		50 - 150				09/15/20 21:50	1
13C3 PFHxS	111		50 - 150				09/15/20 21:50	1
13C8 PFOS	105		50 - 150			09/14/20 17:09	09/15/20 21:50	1

Method: EPA 537 (Mod) - EPA 537 mod QSM 5.1, Table B-15 (Continued)

Job ID: 320-64470-1

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

5 6 7

0

	Ö
	9
1	3

Lab Sample ID: LCS 410-43643/2-A
Matrix: Water

Matrix: Water									Prep Type: Total/N/
Analysis Batch: 43906									Prep Batch: 4364
			Spike		LCS				%Rec.
Analyte			Added		Qualifier	Unit	D	%Rec	Limits
Perfluorobutanoic acid (PFBA)			25.6	22.5		ng/L		88	61 - 153
Perfluoropentanoic acid (PFPeA)			25.6	21.6		ng/L		84	72 - 138
Perfluorohexanoic acid (PFHxA)			25.6	23.1		ng/L		90	67 - 132
Perfluoroheptanoic acid (PFHpA)			25.6	23.3		ng/L		91	64 - 146
Perfluorooctanoic acid (PFOA)			25.6	22.7		ng/L		89	64 - 132
Perfluorononanoic acid (PFNA)			25.6	22.9		ng/L		90	66 - 139
Perfluorodecanoic acid (PFDA)			25.6	21.9		ng/L		86	61 - 132
Perfluoroundecanoic acid			25.6	25.4		ng/L		99	61 - 136
(PFUnA)				<i>(</i>					
Perfluorododecanoic acid			25.6	25.1		ng/L		98	62 - 136
(PFDoA) Perfluorotridecanoic acid			25.6	24.9		ng/L		97	46 - 143
(PFTriA)			25.0	24.9		ng/L		97	40 - 143
Perfluorotetradecanoic acid			25.6	25.8		ng/L		101	65 - 140
(PFTeA)									
Perfluorobutanesulfonic acid			22.6	21.8		ng/L		96	66 - 135
(PFBS)									
Perfluoropentanesulfonic acid			24.0	21.9		ng/L		91	71 - 137
(PFPeS)								~~~	00, 100
Perfluorohexanesulfonic acid			24.2	21.8		ng/L		90	62 - 132
(PFHxS) Perfluoroheptanesulfonic Acid			24.4	21.3		ng/L		88	68 - 132
(PFHpS)			27.7	21.0		ng/L		00	00-102
Perfluorooctanesulfonic acid			24.5	20.3		ng/L		83	54 - 129
(PFOS)						U			
Perfluorodecanesulfonic acid			24.7	23.2		ng/L		94	50 - 137
(PFDS)									
Perfluorooctanesulfonamide			25.6	24.3		ng/L		95	58 - 130
(FOSA) N-ethylperfluorooctanesulfonami			25.6	27.5		ng/l		107	53 - 138
doacetic acid (NEtFOSAA)			25.0	21.5		ng/L		107	55 - 156
N-methylperfluorooctanesulfona			25.6	28.5		ng/L		111	59 - 144
midoacetic acid (NMeFOSAA)						0			
4:2 FTS			23.9	22.6		ng/L		95	59 - 129
6:2 FTS			24.3	20.8		ng/L		86	56 - 135
8:2 FTS			24.5	21.5		ng/L		88	52 - 141
	LCS	LCS							
Isotope Dilution	%Recovery	Qualifier	Limits						
13C4 PFBA	86		50 - 150						
13C5 PFPeA	92		50 - 150						
13C4 PFHpA	96		50 - 150						
13C2 PFTeDA	62		50 - 150						
13C3 PFBS	93		50 - 150						
13C8 FOSA	60		50 - 150						
M2-6:2 FTS	99		50 - 150						
M2-4:2 FTS	86		50 - 150						
M2-8:2 FTS	74		50 - 150						
d5-NEtFOSAA	68		50 - 150						
d3-NMeFOSAA	73		50 - 150						
13C6 PFDA	76		50 - 150						
13C2-PFDoDA	69		50 - 150						
13C5 PFHxA	87		50 - 150						

Method: EPA 537 (Mod) - EPA 537 mod QSM 5.1, Table B-15 (Continued)

Lab Sample ID: LCS 410-436 Matrix: Water Analysis Batch: 43906	543/2-A						Clien		Lab Control S Prep Type: To Prep Batch	otal/N
Analysis Daten. 40000	LCS L	cs							Thep Batch	. 4304
Isotope Dilution	%Recovery Q		Limits							
13C7 PFUnA	69		50 - 150							
13C8 PFOA	96		50 - 150							
13C9 PFNA	89		50 - 150							
13C3 PFHxS	94		50 - 150							
13C8 PFOS	89		50 - 150							
Lab Sample ID: MB 410-4509 Matrix: Solid	95/1-B								ole ID: Method Prep Type: T	otal/N
Analysis Batch: 46642									Prep Batch	: 4509
		в мв								
Analyte		It Qualifier		RL	MDL		D	Prepared	Analyzed	Dil Fa
Perfluorobutanoic acid (PFBA)	N	D	2	2.0		ug/Kg		09/17/20 18:17	09/23/20 01:07	
Perfluoropentanoic acid (PFPeA)	N		0.6			ug/Kg		09/17/20 18:17	09/23/20 01:07	
Perfluorohexanoic acid (PFHxA)	N	D	0.6	60		ug/Kg		09/17/20 18:17	09/23/20 01:07	
Perfluoroheptanoic acid (PFHpA)	N	D	0.6	60		ug/Kg		09/17/20 18:17	09/23/20 01:07	
Perfluorooctanoic acid (PFOA)	N	D	0.6	60		ug/Kg		09/17/20 18:17	09/23/20 01:07	
Perfluorononanoic acid (PFNA)	N	D	0.6	60		ug/Kg		09/17/20 18:17	09/23/20 01:07	
Perfluorodecanoic acid (PFDA)	Ν	D	0.6	60		ug/Kg		09/17/20 18:17	09/23/20 01:07	
Perfluoroundecanoic acid (PFUnA)	N	D	0.6	60		ug/Kg		09/17/20 18:17	09/23/20 01:07	
Perfluorododecanoic acid (PFDoA)	N	D	0.6	60		ug/Kg		09/17/20 18:17	09/23/20 01:07	
Perfluorotridecanoic acid (PFTriA)	Ν	D	0.6	60		ug/Kg		09/17/20 18:17	09/23/20 01:07	
Perfluorotetradecanoic acid (PFTeA)	N	D	0.6	60		ug/Kg		09/17/20 18:17	09/23/20 01:07	
Perfluorobutanesulfonic acid (PFBS)	Ν	D	2	2.0		ug/Kg		09/17/20 18:17	09/23/20 01:07	
Perfluoropentanesulfonic acid (PFPeS)	N	D		.0		ug/Kg		09/17/20 18:17	09/23/20 01:07	
Perfluorohexanesulfonic acid (PFHxS) N	D	0.6	60		ug/Kg		09/17/20 18:17	09/23/20 01:07	
Perfluoroheptanesulfonic Acid (PFHpS)	N	D	0.6	60		ug/Kg		09/17/20 18:17	09/23/20 01:07	
Perfluorooctanesulfonic acid (PFOS)	N	D	0.6	60		ug/Kg		09/17/20 18:17	09/23/20 01:07	
Perfluorodecanesulfonic acid (PFDS)	N	D	0.6	60		ug/Kg		09/17/20 18:17	09/23/20 01:07	
Perfluorooctanesulfonamide (FOSA)	N	D	0.6	60		ug/Kg		09/17/20 18:17	09/23/20 01:07	
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	N	D	2	2.0		ug/Kg		09/17/20 18:17	09/23/20 01:07	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	a N	D	2	2.0		ug/Kg		09/17/20 18:17	09/23/20 01:07	
4:2 FTS	N	D	2	.0		ug/Kg			09/23/20 01:07	
6:2 FTS	N	D	2	2.0		ug/Kg		09/17/20 18:17	09/23/20 01:07	
8:2 FTS	N M	d B MB	3	0.0		ug/Kg		09/17/20 18:17	09/23/20 01:07	
Isotope Dilution	%Recover	y Qualifier	Limits					Prepared	Analyzed	Dil Fa
13C4 PFBA	9	4	50 - 150	0				09/17/20 18:17	09/23/20 01:07	
13C5 PFPeA	g	4	50 - 150	0				09/17/20 18:17	09/23/20 01:07	
13C4 PFHpA	8	6	50 - 150	0				09/17/20 18:17	09/23/20 01:07	
13C2 PFTeDA	9	9	50 - 150	0				09/17/20 18:17	09/23/20 01:07	
13C3 PFBS	9	4	50 - 150	0				09/17/20 18:17	09/23/20 01:07	
13C8 FOSA	9	6	50 - 150	0				09/17/20 18:17	09/23/20 01:07	
M2-6:2 FTS		8	50 - 150						09/23/20 01:07	
M2-4:2 FTS		1	50 - 150						09/23/20 01:07	
M2-8:2 FTS	11		50 - 150						09/23/20 01:07	
d5-NEtFOSAA	10		50 - 150						09/23/20 01:07	

50 - 150

50 - 150

Method: EPA 537 (Mod) - EPA 537 mod QSM 5.1, Table B-15 (Continued)

Lab Sample ID: MB 410-45095/1-B Matrix: Solid Analysis Batch: 46642

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 45095

Analyzed

Dil Fac

1

1

1

1

1

1

1

1

1

8

Prepared

MB MB Isotope Dilution %Recovery Qualifier Limits d3-NMeFOSAA 97 50 - 150 13C6 PFDA 103 50 - 150 13C2-PFDoDA 50 - 150 99 13C5 PFHxA 90 50 - 150 13C7 PFUnA 100 50 - 150 50 - 150 13C8 PFOA 93 13C9 PFNA 93 50 - 150

94

91

Lab Sample ID: LCS 410-45095/2-B Matrix: Solid Analysis Batch: 46642

13C3 PFHxS

13C8 PFOS

Client Sample ID: Lab Control Sample

09/17/20 18:17 09/23/20 01:07

09/17/20 18:17 09/23/20 01:07

09/17/20 18:17 09/23/20 01:07

09/17/20 18:17 09/23/20 01:07

09/17/20 18:17 09/23/20 01:07

09/17/20 18:17 09/23/20 01:07

09/17/20 18:17 09/23/20 01:07

09/17/20 18:17 09/23/20 01:07

09/17/20 18:17 09/23/20 01:07

Prep Type: Total/NA Prep Batch: 45095

AnalyteAddedResultQualifierUnitD%RecLimitsPerfluorobutanoic acid (PFBA)25.023.8ug/Kg9546 - 196Perfluoropentanoic acid (PFPeA)25.023.7ug/Kg9565 - 144Perfluorohexanoic acid (PFHxA)25.026.8ug/Kg10757 - 144Perfluoroheptanoic acid (PFHpA)25.026.2ug/Kg10558 - 159		Spike	LCS	LCS				%Rec.	
Perfluoropentanoic acid (PFPeA) 25.0 23.7 ug/Kg 95 65 - 144 Perfluorohexanoic acid (PFHxA) 25.0 26.8 ug/Kg 107 57 - 144	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Perfluorohexanoic acid (PFHxA) 25.0 26.8 ug/Kg 107 57 - 144	Perfluorobutanoic acid (PFBA)		23.8		ug/Kg		95	46 - 196	
	Perfluoropentanoic acid (PFPeA)	25.0	23.7		ug/Kg		95	65 - 144	
Perfluoroheptanoic acid (PFHpA) 25.0 26.2 ug/Kg 105 58 - 159	Perfluorohexanoic acid (PFHxA)	25.0	26.8		ug/Kg		107	57 - 144	
	Perfluoroheptanoic acid (PFHpA)	25.0	26.2		ug/Kg		105	58 - 159	
Perfluorooctanoic acid (PFOA) 25.0 24.6 ug/Kg 98 59 - 136	Perfluorooctanoic acid (PFOA)	25.0	24.6		ug/Kg		98	59 - 136	
Perfluorononanoic acid (PFNA) 25.0 26.3 ug/Kg 105 62 - 146	Perfluorononanoic acid (PFNA)	25.0	26.3		ug/Kg		105	62 - 146	
Perfluorodecanoic acid (PFDA) 25.0 25.7 ug/Kg 103 59 - 138	Perfluorodecanoic acid (PFDA)	25.0	25.7		ug/Kg		103	59 - 138	
Perfluoroundecanoic acid 25.0 26.3 ug/Kg 105 56 - 144	Perfluoroundecanoic acid	25.0	26.3		ug/Kg		105	56 - 144	
(PFUnA)									
Perfluorododecanoic acid 25.0 26.6 ug/Kg 106 56 - 146		25.0	26.6		ug/Kg		106	56 - 146	
(PFDoA) Perfluorotridecanoic acid 25.0 26.1 ug/Kg 105 60 - 151	• • • • • • • • • • • • • • • • • • • •	25.0	06.4				105	60 151	
Perfluorotridecanoic acid 25.0 26.1 ug/Kg 105 60 - 151 (PFTriA) (PFTTriA) (PFT		25.0	20.1		ug/ĸg		105	00 - 101	
Perfluorotetradecanoic acid 25.0 24.8 ug/Kg 99 61 - 149		25.0	24.8		ua/Ka		99	61 - 149	
(PFTeA)					33				
Perfluorobutanesulfonic acid 22.1 22.9 ug/Kg 103 63 - 138	Perfluorobutanesulfonic acid	22.1	22.9		ug/Kg		103	63 - 138	
(PFBS)	• • • • • • • • • • • • • • • • • • • •								
Perfluoropentanesulfonic acid23.523.5ug/Kg10063 - 149	•	23.5	23.5		ug/Kg		100	63 - 149	
(PFPeS) Perfluorohexanesulfonic acid 23.6 23.4 ug/Kg 99 57 - 138		22.0	00.4				00	F7 400	
Perfluorohexanesulfonic acid 23.6 23.4 ug/Kg 99 57 - 138 (PFHxS) </td <td></td> <td>23.0</td> <td>23.4</td> <td></td> <td>ug/ĸg</td> <td></td> <td>99</td> <td>57 - 130</td> <td></td>		23.0	23.4		ug/ĸg		99	57 - 130	
Perfluoroheptanesulfonic Acid 23.8 24.2 ug/Kg 102 70 - 132		23.8	24.2		ua/Ka		102	70 - 132	
(PFHpS)					33				
Perfluorooctanesulfonic acid 23.9 21.8 ug/Kg 91 54 - 131	Perfluorooctanesulfonic acid	23.9	21.8		ug/Kg		91	54 - 131	
(PFOS)									
Perfluorodecanesulfonic acid24.124.7ug/Kg10360 - 143		24.1	24.7		ug/Kg		103	60 - 143	
(PFDS) Perfluorooctanesulfonamide 25.0 25.4 ug/Kg 101 44 - 146		25.0	0E 4		ua/Ka		101	44 446	
Perfluorooctanesulfonamide 25.0 25.4 ug/Kg 101 44 - 146 (FOSA) (FOSA) <t< td=""><td></td><td>25.0</td><td>23.4</td><td></td><td>ug/ĸg</td><td></td><td>101</td><td>44 - 140</td><td></td></t<>		25.0	23.4		ug/ĸg		101	44 - 140	
N-ethylperfluorooctanesulfonami 25.0 31.8 ug/Kg 127 45 - 150	• • • • • • • • • • • • • • • • • • • •	25.0	31.8		ua/Ka		127	45 - 150	
doacetic acid (NEtFOSAA)	51				33				
N-methylperfluorooctanesulfona 25.0 30.0 ug/Kg 120 47 - 159		25.0	30.0		ug/Kg		120	47 _ 159	
midoacetic acid (NMeFOSAA)									
4:2 FTS 23.4 22.7 ug/Kg 97 50 - 138									
6:2 FTS 23.7 22.8 ug/Kg 96 51-141					ug/Kg		96	51 - 141	
8:2 FTS 24.0 23.0 ug/Kg 96 45-153	8:2 FTS	24.0	23.0		ug/Kg		96	45 - 153	

Method: EPA 537 (Mod) - EPA 537 mod QSM 5.1, Table B-15 (Continued)

	LCS	LCS	
Isotope Dilution	%Recovery	Qualifier	Limits
13C4 PFBA	98		50 - 150
13C5 PFPeA	96		50 - 150
13C4 PFHpA	93		50 - 150
13C2 PFTeDA	103		50 - 150
13C3 PFBS	101		50 - 150
13C8 FOSA	98		50 - 150
M2-6:2 FTS	101		50 - 150
M2-4:2 FTS	94		50 - 150
M2-8:2 FTS	109		50 - 150
d5-NEtFOSAA	105		50 - 150
d3-NMeFOSAA	105		50 - 150
13C6 PFDA	101		50 - 150
13C2-PFDoDA	99		50 - 150
13C5 PFHxA	95		50 - 150
13C7 PFUnA	100		50 - 150
13C8 PFOA	99		50 - 150
13C9 PFNA	96		50 - 150
13C3 PFHxS	96		50 - 150
13C8 PFOS	99		50 - 150

Lab Sample ID: 320-64470-4 MS Matrix: Solid Analysis Batch: 46642

Analysis Batch: 46642									Prep Batch: 45095
	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Perfluorobutanoic acid (PFBA)	ND	F2 F1	24.9	24.4		ug/Kg	☆	92	46 - 196
Perfluoropentanoic acid (PFPeA)	6.1	F2 F1	24.9	26.7		ug/Kg	☆	83	65 - 144
Perfluorohexanoic acid (PFHxA)	6.3	F2 F1	24.9	31.4		ug/Kg	☆	101	57 - 144
Perfluoroheptanoic acid (PFHpA)	1.5	F2 F1	24.9	28.4		ug/Kg	₿	108	58 - 159
Perfluorooctanoic acid (PFOA)	ND	F2 F1	24.9	24.8		ug/Kg	¢	100	59 - 136
Perfluorononanoic acid (PFNA)	ND	F2 F1	24.9	27.6		ug/Kg	☆	111	62 - 146
Perfluorodecanoic acid (PFDA)	ND	F2 F1	24.9	24.9		ug/Kg	₿	100	59 - 138
Perfluoroundecanoic acid	ND	F2 F1	24.9	25.9		ug/Kg	¢	104	56 - 144
(PFUnA)									
Perfluorododecanoic acid	ND	F2 F1	24.9	26.7		ug/Kg	☆	107	56 - 146
(PFDoA)			04.0	00.7			· · · · · · · ·	407	CD 454
Perfluorotridecanoic acid (PFTriA)	ND	F2 F1	24.9	26.7		ug/Kg	¢	107	60 - 151
Perfluorotetradecanoic acid	ND	F2 F1	24.9	25.5		ug/Kg	¢	102	61 - 149
(PFTeA)			20	2010		~ <u>9</u> ,9			0.1-1.10
Perfluorobutanesulfonic acid	ND	F2 F1	22.0	24.8		ug/Kg	¢	107	63 - 138
(PFBS)									
Perfluoropentanesulfonic acid	ND	F2 F1	23.4	24.9		ug/Kg	☆	104	63 - 149
(PFPeS)			00 F	04.7				101	F7 400
Perfluorohexanesulfonic acid (PFHxS)	ND	F2 F1	23.5	24.7		ug/Kg	¢	104	57 - 138
Perfluoroheptanesulfonic Acid	ND	F2 F1	23.7	24.2		ug/Kg	¢	102	70 - 132
(PFHpS)						33			
Perfluorooctanesulfonic acid	ND	F2 F1	23.8	22.4		ug/Kg	¢	94	54 - 131
(PFOS)									
Perfluorodecanesulfonic acid	ND	F2 F1	24.0	24.6		ug/Kg	☆	103	60 - 143
(PFDS)		F0	24.0	00 7		ua/Ka	ىلەر	05	44 446
Perfluorooctanesulfonamide (FOSA)	ND	FZ	24.9	23.7		ug/Kg	¢	95	44 - 146

Client Sample ID: SB-5A-70 Prep Type: Total/NA Prep Batch: 45095

5

8

9

Method: EPA 537 (Mod) - EPA 537 mod QSM 5.1, Table B-15 (Continued)

Lab Sample ID: 320-64470 Matrix: Solid Analysis Batch: 46642)-4 MS							Client	Sample ID: SB-5A-70 Prep Type: Total/NA Prep Batch: 45095
	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
N-ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)	ND	F2	24.9	29.5		ug/Kg	<u></u>	118	45 - 150
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	ND	F2	24.9	27.9		ug/Kg	☆	112	47 - 159
4:2 FTS	ND	F2 F1	23.3	23.7		ug/Kg	¢	102	50 - 138
6:2 FTS	ND	F2 F1	23.6	23.2		ug/Kg	₽	98	51 - 141
8:2 FTS	ND	F2 F1	23.9	26.1		ug/Kg	¢	109	45 - 153
	MS	MS							
Isotope Dilution	%Recovery	Qualifier	Limits						
13C4 PFBA	95		50 - 150						
13C5 PFPeA	95		50 - 150						
13C4 PFHpA	93		50 - 150						
13C2 PFTeDA	98		50 - 150						
13C3 PFBS	94		50 - 150						
13C8 FOSA	100		50 - 150						
M2-6:2 FTS	97		50 - 150						
M2-4:2 FTS	94		50 - 150						
M2-8:2 FTS	95		50 - 150						
d5-NEtFOSAA	94		50 - 150						
d3-NMeFOSAA	99		50 - 150						
13C6 PFDA	100		50 - 150						
13C2-PFDoDA	98		50 - 150						
13C5 PFHxA	92		50 - 150						
13C7 PFUnA	97		50 - 150						
13C8 PFOA	96		50 - 150						
13C9 PFNA	89		50 - 150						
13C3 PFHxS	93		50 - 150						
13C8 PFOS	94		50 - 150						

Lab Sample ID: 320-64470-4 MSD Matrix: Solid Analysis Batch: 46642

Analysis Batch: 46642									Prep E	atch: 4	15095
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Perfluorobutanoic acid (PFBA)	ND	F2 F1	24.9	11.3	F2 F1	ug/Kg	¢	39	46 - 196	73	30
Perfluoropentanoic acid (PFPeA)	6.1	F2 F1	24.9	13.7	F2 F1	ug/Kg	¢	30	65 - 144	64	30
Perfluorohexanoic acid (PFHxA)	6.3	F2 F1	24.9	16.3	F2 F1	ug/Kg	¢	40	57 - 144	63	30
Perfluoroheptanoic acid (PFHpA)	1.5	F2 F1	24.9	14.3	F2 F1	ug/Kg	¢	51	58 - 159	66	30
Perfluorooctanoic acid (PFOA)	ND	F2 F1	24.9	11.1	F2 F1	ug/Kg	¢	44	59 - 136	77	30
Perfluorononanoic acid (PFNA)	ND	F2 F1	24.9	12.4	F2 F1	ug/Kg	¢	50	62 - 146	76	30
Perfluorodecanoic acid (PFDA)	ND	F2 F1	24.9	11.1	F2 F1	ug/Kg	¢	45	59 - 138	77	30
Perfluoroundecanoic acid (PFUnA)	ND	F2 F1	24.9	11.3	F2 F1	ug/Kg	₽	45	56 - 144	79	30
Perfluorododecanoic acid (PFDoA)	ND	F2 F1	24.9	12.4	F2 F1	ug/Kg	₽	50	56 - 146	73	30
Perfluorotridecanoic acid (PFTriA)	ND	F2 F1	24.9	12.5	F2 F1	ug/Kg	¢	50	60 - 151	72	30
Perfluorotetradecanoic acid (PFTeA)	ND	F2 F1	24.9	11.3	F2 F1	ug/Kg	₽	45	61 - 149	77	30
Perfluorobutanesulfonic acid (PFBS)	ND	F2 F1	22.0	11.0	F2 F1	ug/Kg	₽	44	63 - 138	77	30

Eurofins TestAmerica, Sacramento

Client Sample ID: SB-5A-70

Prep Type: Total/NA

5

Method: EPA 537 (Mod) - EPA 537 mod QSM 5.1, Table B-15 (Continued)

Lab Sample ID: 320-64470 Matrix: Solid Analysis Batch: 46642	-4 MSD							Client	Sample I Prep Ty Prep E		tal/NA
-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Perfluoropentanesulfonic acid (PFPeS)	ND	F2 F1	23.4	11.7	F2 F1	ug/Kg		48	63 - 149	72	30
Perfluorohexanesulfonic acid (PFHxS)	ND	F2 F1	23.5	10.8	F2 F1	ug/Kg	¢	45	57 - 138	78	30
Perfluoroheptanesulfonic Acid (PFHpS)	ND	F2 F1	23.7	10.6	F2 F1	ug/Kg	¢	45	70 - 132	78	30
Perfluorooctanesulfonic acid (PFOS)	ND	F2 F1	23.8	9.60	F2 F1	ug/Kg	₽	40	54 - 131	80	30
Perfluorodecanesulfonic acid (PFDS)	ND	F2 F1	24.0	10.7	F2 F1	ug/Kg	₽	45	60 - 143	79	30
Perfluorooctanesulfonamide (FOSA)	ND	F2	24.9	11.0	F2	ug/Kg	₽	44	44 - 146	73	30
N-ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)	ND	F2	24.9	13.5	F2	ug/Kg	☆	54	45 - 150	74	30
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	ND	F2	24.9	11.9	F2	ug/Kg	₽	48	47 - 159	80	30
4:2 FTS	ND	F2 F1	23.3	10.9	F2 F1	ug/Kg	¢	47	50 - 138	74	30
6:2 FTS	ND	F2 F1	23.6	10.7	F2 F1	ug/Kg		45	51_141	74	30
8:2 FTS	ND	F2 F1	23.9	10.4	F2 F1	ug/Kg	¢	43	45 - 153	86	30
	MSD	MSD									
Isotope Dilution	%Recovery	Qualifier	Limits								
13C4 PFBA	97		50 - 150								
13C5 PFPeA	98		50 - 150								
13C4 PFHpA	90		50 - 150								
13C2 PFTeDA	97		50 - 150								
13C3 PFBS	96		50 - 150								
13C8 FOSA	99		50 - 150								
M2-6:2 FTS	99		50 - 150								
M2-4:2 FTS	93		50 - 150								
M2-8:2 FTS	102		50 - 150								
d5-NEtFOSAA	95		50 - 150								
d3-NMeFOSAA	98		50 - 150								
13C6 PFDA	96		50 ₋ 150								
13C2-PFDoDA	97		50 - 150								
13C5 PFHxA	95		50 - 150								
13C7 PFUnA	105		50 - 150								
13C8 PFOA	97		50 - 150								
13C9 PFNA	94		50 - 150								
13C3 PFHxS	97		50 - 150								
13C8 PFOS	98		50 - 150								

QC Association Summary

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Prep Type

Total/NA

Matrix

Water

Water

Water

Water

Water

Water

Water

Matrix

Water

Water

Water

Water

Water

Water

Matrix

Water

Client: Geosyntec Consultants, Inc. Project/Site: PFAS - Hollywood Burbank Airport

Client Sample ID

EB-200208

FB-200208

FB-200208

EB-200209

FB-200209

Method Blank

Lab Control Sample

Client Sample ID

FB-200208

FB-200208

EB-200209

FB-200209

Method Blank

Lab Control Sample

Client Sample ID

EB-200208

Job ID: 320-64470-1

Prep Batch

Prep Batch

43643

43643

43643

43643

43643

43643

43643

Prep Batch

Method

537 IDA

Method

EPA 537 (Mod)

Method

9 10 11 12 13

Prep Batch: 45095

LCMS

Prep Batch: 43643

320-64470-1

320-64470-2

320-64470-5

320-64470-6

320-64470-2 - DL

MB 410-43643/1-A

LCS 410-43643/2-A

Lab Sample ID

320-64470-2 - DL

MB 410-43643/1-A

LCS 410-43643/2-A

Lab Sample ID

320-64470-1

Analysis Batch: 44488

320-64470-2

320-64470-5

320-64470-6

Analysis Batch: 43906

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
320-64470-3	SB-5A-60	Total/NA	Solid	SHAKE	
320-64470-4	SB-5A-70	Total/NA	Solid	SHAKE	
320-64470-7	SB-5A-80	Total/NA	Solid	SHAKE	
320-64470-8	SB-5A-80-DUP	Total/NA	Solid	SHAKE	
320-64470-9	SB-5A-90	Total/NA	Solid	SHAKE	
320-64470-10	SB-5A-100	Total/NA	Solid	SHAKE	
320-64470-11	SB-5A-110	Total/NA	Solid	SHAKE	
320-64470-12	SB-5A-120	Total/NA	Solid	SHAKE	
320-64470-13	SB-5A-130	Total/NA	Solid	SHAKE	
MB 410-45095/1-B	Method Blank	Total/NA	Solid	SHAKE	
LCS 410-45095/2-B	Lab Control Sample	Total/NA	Solid	SHAKE	
320-64470-4 MS	SB-5A-70	Total/NA	Solid	SHAKE	
320-64470-4 MSD	SB-5A-70	Total/NA	Solid	SHAKE	

Cleanup Batch: 45100

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
320-64470-3	SB-5A-60	Total/NA	Solid	Extract Aliquot	45095
320-64470-4	SB-5A-70	Total/NA	Solid	Extract Aliquot	45095
320-64470-7	SB-5A-80	Total/NA	Solid	Extract Aliquot	45095
320-64470-8	SB-5A-80-DUP	Total/NA	Solid	Extract Aliquot	45095
320-64470-9	SB-5A-90	Total/NA	Solid	Extract Aliquot	45095
320-64470-10	SB-5A-100	Total/NA	Solid	Extract Aliquot	45095
320-64470-11	SB-5A-110	Total/NA	Solid	Extract Aliquot	45095
320-64470-12	SB-5A-120	Total/NA	Solid	Extract Aliquot	45095
320-64470-13	SB-5A-130	Total/NA	Solid	Extract Aliquot	45095
MB 410-45095/1-B	Method Blank	Total/NA	Solid	Extract Aliquot	45095
LCS 410-45095/2-B	Lab Control Sample	Total/NA	Solid	Extract Aliquot	45095
320-64470-4 MS	SB-5A-70	Total/NA	Solid	Extract Aliquot	45095

QC Association Summary

Client: Geosyntec Consultants, Inc. Project/Site: PFAS - Hollywood Burbank Airport Job ID: 320-64470-1

9

LCMS (Continued)

Cleanup Batch: 45100 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-64470-4 MSD	SB-5A-70	Total/NA	Solid	Extract Aliquot	45095
Analysis Batch: 466	642				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-64470-4	SB-5A-70	Total/NA	Solid	EPA 537 (Mod)	45100
320-64470-7	SB-5A-80	Total/NA	Solid	EPA 537 (Mod)	45100
320-64470-8	SB-5A-80-DUP	Total/NA	Solid	EPA 537 (Mod)	45100
320-64470-9	SB-5A-90	Total/NA	Solid	EPA 537 (Mod)	45100
320-64470-10	SB-5A-100	Total/NA	Solid	EPA 537 (Mod)	45100
320-64470-11	SB-5A-110	Total/NA	Solid	EPA 537 (Mod)	45100
320-64470-12	SB-5A-120	Total/NA	Solid	EPA 537 (Mod)	45100
320-64470-13	SB-5A-130	Total/NA	Solid	EPA 537 (Mod)	45100
MB 410-45095/1-B	Method Blank	Total/NA	Solid	EPA 537 (Mod)	45100
LCS 410-45095/2-B	Lab Control Sample	Total/NA	Solid	EPA 537 (Mod)	45100
320-64470-4 MS	SB-5A-70	Total/NA	Solid	EPA 537 (Mod)	45100
320-64470-4 MSD	SB-5A-70	Total/NA	Solid	EPA 537 (Mod)	45100
Analysis Batch: 472	281				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-64470-3	SB-5A-60	Total/NA	Solid	EPA 537 (Mod)	45100

General Chemistry

Analysis Batch: 44183

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-64470-3	SB-5A-60	Total/NA	Solid	Moisture	
320-64470-4	SB-5A-70	Total/NA	Solid	Moisture	
320-64470-7	SB-5A-80	Total/NA	Solid	Moisture	
320-64470-8	SB-5A-80-DUP	Total/NA	Solid	Moisture	
320-64470-9	SB-5A-90	Total/NA	Solid	Moisture	
320-64470-10	SB-5A-100	Total/NA	Solid	Moisture	
320-64470-11	SB-5A-110	Total/NA	Solid	Moisture	
320-64470-12	SB-5A-120	Total/NA	Solid	Moisture	
320-64470-13	SB-5A-130	Total/NA	Solid	Moisture	

Matrix: Water

Matrix: Solid

Matrix: Solid

Matrix: Solid

Matrix: Solid

Percent Solids: 96.5

Percent Solids: 95.6

2 3 4 5 6 7 8 9

Lab Sample ID: 320-64470-2

Lab Sample ID: 320-64470-3

Lab Sample ID: 320-64470-3

Lab Sample ID: 320-64470-4

Lab Sample ID: 320-64470-4

Client Sample ID: EB-200208 Date Collected: 09/08/20 14:10 Date Received: 09/10/20 11:05

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	537 IDA			317.4 mL	1 mL	43643	09/14/20 17:09	QLP7	ELLE
Total/NA	Analysis	EPA 537 (Mod)		1			44488	09/16/20 18:02	PY4D	ELLE

Client Sample ID: FB-200208 Date Collected: 09/08/20 12:20 Date Received: 09/10/20 11:05

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA Total/NA	Prep Analysis	537 IDA EPA 537 (Mod)		1	298.4 mL	1 mL	43643 43906	09/14/20 17:09 09/15/20 18:13		ELLE ELLE
Total/NA Total/NA	Prep Analysis	537 IDA EPA 537 (Mod)	DL DL	10	298.4 mL	1 mL	43643 43906	09/14/20 17:09 09/15/20 22:08		ELLE ELLE

Client Sample ID: SB-5A-60

Date Collected: 09/08/20 13:25 Date Received: 09/10/20 11:05

Γ	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			44183	09/15/20 20:21	OEL4	ELLE

Client Sample ID: SB-5A-60

Date Collected: 09/08/20 13:25 Date Received: 09/10/20 11:05

Γ	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	SHAKE			1.03 g	4 mL	45095	09/17/20 18:17	NP8L	ELLE
Total/NA	Cleanup	Extract Aliquot			2 mL	1 mL	45100	09/17/20 18:24	NP8L	ELLE
Total/NA	Analysis	EPA 537 (Mod)		1			47281	09/24/20 09:36	UCD3	ELLE

Client Sample ID: SB-5A-70

Date Collected: 09/08/20 14:35 Date Received: 09/10/20 11:05

Ргер Туре	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			44183	09/15/20 20:21	OEL4	ELLE

Client Sample ID: SB-5A-70 Date Collected: 09/08/20 14:35 Date Received: 09/10/20 11:05

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	SHAKE			1.01 g	4 mL	45095	09/17/20 18:17	NP8L	ELLE
Total/NA	Cleanup	Extract Aliquot			2 mL	1 mL	45100	09/17/20 18:24	NP8L	ELLE
Total/NA	Analysis	EPA 537 (Mod)		1			46642	09/23/20 01:34	GG3Y	ELLE

10

Lab Sample ID: 320-64470-5

Client Sample ID: EB-200209 Date Collected: 09/09/20 11:04

-	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537 IDA			308.4 mL	1 mL	43643	09/14/20 17:09		ELLE
Total/NA	Analysis	EPA 537 (Mod)		1	000.11112		43906	09/15/20 18:22		ELLE
lient Sam		200200						ab Sample	220 · CI	64470
ate Collecte								an Sample		trix: Wat
ate Receive									Ivia	
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537 IDA			307.8 mL	1 mL	43643	09/14/20 17:09		
Total/NA	Analysis	EPA 537 (Mod)		1	507.0 IIIL	1 111	43906	09/15/20 18:31		ELLE
	-	. ,								
lient Sam							L	ab Sample		
ate Collecte ate Receive									IVI	atrix: So
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
				1			44183	09/15/20 20:21	OEL4	ELLE
lient Sam ate Collecte	d: 09/09/20 0	7:39						ab Sample P	ID: 320	atrix: So
lient Sam	ole ID: SB- d: 09/09/20 0 d: 09/10/20 1	5A-80 7:39 1:05				Final	L	ab Sample P	ID: 320 Ma	atrix: So
Client Sam Date Collecte Date Received	ole ID: SB- d: 09/09/20 0 d: 09/10/20 1 Batch	5A-80 7:39 1:05 Batch	Run	Dil	Initial	Final	L	ab Sample P Prepared	ID: 320 Ma ercent S	atrix: So olids: 9
Client Sam Date Collecte Date Received Prep Type	ole ID: SB- d: 09/09/20 0 d: 09/10/20 1 Batch Type	5A-80 7:39 1:05 Batch Method	Run		Amount	Amount	L Batch Number	ab Sample P Prepared or Analyzed	ID: 320 Ma ercent S Analyst	atrix: So olids: 9 Lab
Client Sam Date Collecte Date Received Prep Type Total/NA	ole ID: SB- d: 09/09/20 0 d: 09/10/20 1 Batch Type Prep	5A-80 7:39 1:05 Batch Method SHAKE	Run	Dil	Amount 1.02 g	Amount 4 mL	Batch Number 45095	ab Sample P Prepared or Analyzed 09/17/20 18:17	ID: 320 Ma ercent S Analyst NP8L	atrix: So olids: 9 Lab ELLE
Client Sam Pate Collecte Pate Receive Prep Type Total/NA Total/NA	ole ID: SB- d: 09/09/20 0 d: 09/10/20 1 Batch Type	5A-80 7:39 1:05 Batch Method	Run	Dil	Amount	Amount	L Batch Number	ab Sample P Prepared or Analyzed	ID: 320 Ma ercent S Analyst NP8L NP8L	atrix: So olids: 9
Client Sam Date Collecte Date Received Prep Type Total/NA Total/NA Total/NA	Die ID: SB- d: 09/09/20 0 d: 09/10/20 1 Batch Type Prep Cleanup Analysis	5A-80 7:39 1:05 Batch Method SHAKE Extract Aliquot EPA 537 (Mod)	Run	Dil Factor	Amount 1.02 g	Amount 4 mL	Batch Number 45095 45100 46642	ab Sample Prepared or Analyzed 09/17/20 18:17 09/17/20 18:24 09/23/20 02:02	ID: 320 Ma ercent S Analyst NP8L NP8L GG3Y	Lab ELLE ELLE ELLE ELLE
Prep Type Total/NA Total/NA Total/NA	Die ID: SB- d: 09/09/20 0 d: 09/10/20 1 Batch Type Prep Cleanup Analysis Die ID: SB-	5A-80 7:39 1:05 Batch Method SHAKE Extract Aliquot EPA 537 (Mod) 5A-80-DUP	Run	Dil Factor	Amount 1.02 g	Amount 4 mL	Batch Number 45095 45100 46642	ab Sample P Prepared or Analyzed 09/17/20 18:17 09/17/20 18:24	ID: 320 Ma ercent S Analyst NP8L NP8L GG3Y ID: 320	Lab ELLE ELLE ELLE ELLE ELLE
Client Sam Pate Collecte Pate Received Prep Type Total/NA Total/NA Total/NA Client Sam Pate Collecte	Die ID: SB- d: 09/09/20 0 d: 09/10/20 1 Batch Type Prep Cleanup Analysis Die ID: SB- d: 09/09/20 0	5A-80 7:39 1:05 Batch Method SHAKE Extract Aliquot EPA 537 (Mod) 5A-80-DUP 7:39	Run	Dil Factor	Amount 1.02 g	Amount 4 mL	Batch Number 45095 45100 46642	ab Sample Prepared or Analyzed 09/17/20 18:17 09/17/20 18:24 09/23/20 02:02	ID: 320 Ma ercent S Analyst NP8L NP8L GG3Y ID: 320	Lab ELLE ELLE ELLE ELLE ELLE
Client Sam Date Collecte Date Received Prep Type Total/NA Total/NA Total/NA Client Sam Date Collecte	Die ID: SB- d: 09/09/20 0 d: 09/10/20 1 Batch Type Prep Cleanup Analysis Die ID: SB- d: 09/09/20 0	5A-80 7:39 1:05 Batch Method SHAKE Extract Aliquot EPA 537 (Mod) 5A-80-DUP 7:39	Run	Dil Factor	Amount 1.02 g	Amount 4 mL	Batch Number 45095 45100 46642	ab Sample Prepared or Analyzed 09/17/20 18:17 09/17/20 18:24 09/23/20 02:02	ID: 320 Ma ercent S Analyst NP8L NP8L GG3Y ID: 320	Lab ELLE ELLE ELLE ELLE
Client Sam Pate Collecte Prep Type Total/NA Total/NA Total/NA Client Sam Pate Collecte Pate Received	Die ID: SB- d: 09/09/20 0 d: 09/10/20 1 Batch Type Prep Cleanup Analysis Die ID: SB- d: 09/09/20 0 d: 09/10/20 1	5A-80 7:39 1:05 Batch Method SHAKE Extract Aliquot EPA 537 (Mod) 5A-80-DUP 7:39 1:05	Run	Dil Factor	Amount 1.02 g 2 mL	Amount 4 mL 1 mL	L Batch <u>Number</u> 45095 45100 46642 L	ab Sample P Prepared or Analyzed 09/17/20 18:17 09/17/20 18:24 09/23/20 02:02 ab Sample	ID: 320 Ma ercent S Analyst NP8L NP8L GG3Y ID: 320	Lab ELLE ELLE ELLE ELLE ELLE
Client Sam Date Collecte Date Received Date	Die ID: SB- d: 09/09/20 0 d: 09/10/20 1 Batch Type Prep Cleanup Analysis Die ID: SB- d: 09/09/20 0 d: 09/10/20 1 Batch	5A-80 7:39 1:05 Batch Method SHAKE Extract Aliquot EPA 537 (Mod) 5A-80-DUP 7:39 1:05 Batch		Dil Factor 1 Dil	Amount 1.02 g 2 mL	Amount 4 mL 1 mL	L Batch <u>Number</u> 45095 45100 46642 L Batch	ab Sample P Prepared or Analyzed 09/17/20 18:17 09/17/20 18:24 09/23/20 02:02 ab Sample Prepared	ID: 320 Ma ercent S Analyst NP8L GG3Y ID: 320 Ma Analyst	Lab ELLE ELLE ELLE ELLE ELLE ELLE
Client Sam Date Collecte Date Received Prep Type Total/NA Total/NA Client Sam Date Collecte Date Received Prep Type Total/NA	Die ID: SB- d: 09/09/20 0 d: 09/10/20 1 Batch Type Prep Cleanup Analysis Die ID: SB- d: 09/09/20 0 d: 09/10/20 1 Batch Type Analysis	5A-80 7:39 1:05 Batch Method SHAKE Extract Aliquot EPA 537 (Mod) 5A-80-DUP 7:39 1:05 Batch Method Moisture		Dil Factor 1 Dil	Amount 1.02 g 2 mL	Amount 4 mL 1 mL	L Batch <u>Number</u> 45095 45100 46642 L Batch <u>Number</u> 44183	ab Sample P Prepared or Analyzed 09/17/20 18:17 09/17/20 18:24 09/23/20 02:02 ab Sample Prepared or Analyzed 09/15/20 20:21	ID: 320 Ma ercent S Analyst NP8L GG3Y ID: 320 Ma Analyst OEL4	Lab ELLE ELLE ELLE ELLE Atrix: So
Client Sam Date Collecte Date Received Prep Type Total/NA Total/NA Client Sam Date Collecte Date Received Prep Type Total/NA	Die ID: SB- d: 09/09/20 0 d: 09/10/20 1 Batch Type Prep Cleanup Analysis Die ID: SB- d: 09/09/20 0 d: 09/10/20 1 Batch Type Analysis Die ID: SB-	5A-80 7:39 1:05 Batch Method SHAKE Extract Aliquot EPA 537 (Mod) 5A-80-DUP 7:39 1:05 Batch Method Moisture 5A-80-DUP		Dil Factor 1 Dil	Amount 1.02 g 2 mL	Amount 4 mL 1 mL	L Batch <u>Number</u> 45095 45100 46642 L Batch <u>Number</u> 44183	ab Sample P Prepared or Analyzed 09/17/20 18:17 09/17/20 18:24 09/23/20 02:02 ab Sample Prepared or Analyzed	ID: 320 Ma ercent S Analyst NP8L GG3Y ID: 320 Ma Analyst OEL4 ID: 320	Lab ELLE ELLE ELLE ELLE Arrix: So Lab ELLE -64470
Client Sam Date Collecte Date Received Prep Type Total/NA Total/NA Client Sam Date Collecte Date Received Prep Type Total/NA Client Sam Date Collecte	Die ID: SB- d: 09/09/20 0 d: 09/10/20 1 Batch Type Prep Cleanup Analysis Die ID: SB- d: 09/09/20 0 d: 09/10/20 1 Batch Type Analysis Die ID: SB- d: 09/09/20 0	5A-80 7:39 1:05 Batch Method SHAKE Extract Aliquot EPA 537 (Mod) 5A-80-DUP 7:39 1:05 Batch Method Moisture 5A-80-DUP 7:39		Dil Factor 1 Dil	Amount 1.02 g 2 mL	Amount 4 mL 1 mL	L Batch <u>Number</u> 45095 45100 46642 L Batch <u>Number</u> 44183	ab Sample Prepared or Analyzed 09/17/20 18:17 09/17/20 18:24 09/23/20 02:02 ab Sample Prepared or Analyzed 09/15/20 20:21 ab Sample	ID: 320 Ma ercent S Analyst NP8L GG3Y ID: 320 Ma Analyst OEL4 ID: 320	Lab ELLE ELLE ELLE -64470 atrix: So -64470 atrix: So
Client Sam Date Collecte Date Received Prep Type Total/NA Total/NA Total/NA Client Sam Date Collecte Date Received Prep Type Total/NA	Die ID: SB- d: 09/09/20 0 d: 09/10/20 1 Batch Type Prep Cleanup Analysis Die ID: SB- d: 09/09/20 0 d: 09/10/20 1 Batch Type Analysis Die ID: SB- d: 09/09/20 0	5A-80 7:39 1:05 Batch Method SHAKE Extract Aliquot EPA 537 (Mod) 5A-80-DUP 7:39 1:05 Batch Method Moisture 5A-80-DUP 7:39		Dil Factor 1 Factor 1	Amount 1.02 g 2 mL	Amount 4 mL 1 mL	L Batch <u>Number</u> 45095 45100 46642 L Batch <u>Number</u> 44183	ab Sample Prepared or Analyzed 09/17/20 18:17 09/17/20 18:24 09/23/20 02:02 ab Sample Prepared or Analyzed 09/15/20 20:21 ab Sample Prepared	ID: 320 Ma ercent S Analyst NP8L GG3Y ID: 320 Ma Analyst OEL4 ID: 320 Ma	Lab ELLE ELLE ELLE -64470 atrix: So -64470 atrix: So
Client Sam Date Collecte Date Received Prep Type Total/NA Total/NA Client Sam Date Collecte Date Received Prep Type Total/NA Client Sam Date Collecte Date Collecte Date Collecte	Die ID: SB- d: 09/09/20 0 d: 09/10/20 1 Batch Type Prep Cleanup Analysis Die ID: SB- d: 09/09/20 0 d: 09/10/20 1 Batch Type Analysis Die ID: SB- d: 09/09/20 0 d: 09/10/20 1 Batch	5A-80 7:39 1:05 Batch Method SHAKE Extract Aliquot EPA 537 (Mod) 5A-80-DUP 7:39 1:05 Batch Method Moisture 5A-80-DUP 7:39	Run	Dil Factor 1 Factor 1 Dil Factor 1	Amount 1.02 g 2 mL Initial Amount Initial	Amount 4 mL 1 mL Final Amount	Batch Number 45095 45100 46642 L Batch Number 44183 L Batch	ab Sample Prepared or Analyzed 09/17/20 18:17 09/17/20 18:24 09/23/20 02:02 ab Sample Prepared or Analyzed 09/15/20 20:21 ab Sample Prepared	ID: 320 Ma ercent S Analyst NP8L GG3Y ID: 320 Ma OEL4 ID: 320 Ma ercent S	Lab ELLE ELLE ELLE -6447(atrix: So olids: 9
Client Sam Prep Type Total/NA Total/NA Total/NA Client Sam Prep Type Total/NA Client Sam Prep Type Total/NA Client Sam Prep Type	Die ID: SB- d: 09/09/20 0 d: 09/10/20 1 Batch Type Prep Cleanup Analysis Die ID: SB- d: 09/09/20 0 d: 09/10/20 1 Batch Type Analysis Die ID: SB- d: 09/09/20 0 d: 09/10/20 1	5A-80 7:39 1:05 Batch Method SHAKE Extract Aliquot EPA 537 (Mod) 5A-80-DUP 7:39 1:05 Batch Method Moisture 5A-80-DUP 7:39 1:05 Batch Method		Dil Factor 1 Factor 1	Amount 1.02 g 2 mL Initial Amount Initial Amount	Amount 4 mL 1 mL	Batch Number 45095 45100 46642 L Batch Number L Batch Number	ab Sample Prepared or Analyzed 09/17/20 18:17 09/17/20 18:24 09/23/20 02:02 ab Sample Prepared or Analyzed 09/15/20 20:21 ab Sample Prepared	ID: 320 Ma ercent S Analyst NP8L GG3Y ID: 320 Ma Analyst OEL4 ID: 320 Ma ercent S	Lab ELLE ELLE ELLE -64470 atrix: So olids: 9
Client Sam Date Collecte Date Received Prep Type Total/NA Total/NA Client Sam Date Collecte Date Received Prep Type Total/NA Client Sam Date Collecte	Die ID: SB- d: 09/09/20 0 d: 09/10/20 1 Batch Type Prep Cleanup Analysis Die ID: SB- d: 09/09/20 0 d: 09/10/20 1 Batch Type Analysis Die ID: SB- d: 09/09/20 0 d: 09/10/20 1 Batch Type	5A-80 7:39 1:05 Batch Method SHAKE Extract Aliquot EPA 537 (Mod) 5A-80-DUP 7:39 1:05 Batch Method Moisture 5A-80-DUP 7:39	Run	Dil Factor 1 Factor 1 Dil Factor 1	Amount 1.02 g 2 mL Initial Amount Initial	Amount 4 mL 1 mL Final Amount	Batch Number 45095 45100 46642 L Batch Number 44183 L Batch	ab Sample Prepared or Analyzed 09/17/20 18:17 09/17/20 18:24 09/23/20 02:02 ab Sample Prepared 09/15/20 20:21 ab Sample Prepared 09/15/20 20:21	ID: 320 Ma ercent S Analyst NP8L GG3Y ID: 320 Ma OEL4 ID: 320 Ma ercent S Analyst NP8L	Lab ELLE ELLE ELLE -6447(atrix: So olids: 9

Matrix: Solid

10

Lab Sample ID: 320-64470-9

Client Sample ID: SB-5A-90 Date Collected: 09/09/20 08:45 Date Received: 09/10/20 11:05

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	Amount	Amount	44183	09/15/20 20:21		ELLE
Iotal/INA	Analysis	WOISture		1			44105	09/13/20 20.21	UEL4	
lient Sam	ole ID: SB-	5A-90					L	ab Sample	ID: 320	-64470
ate Collecte									Ма	atrix: So
ate Receive	d: 09/10/20 1	1:05						P	ercent S	olids: 97
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	SHAKE			1.02 g	4 mL	45095	09/17/20 18:17	NP8L	ELLE
Total/NA	Cleanup	Extract Aliquot			2 mL	1 mL	45100	09/17/20 18:24	NP8L	ELLE
Total/NA	Analysis	EPA 537 (Mod)		1			46642	09/23/20 02:20	GG3Y	ELLE
lient Sam		54 100					1.0	h Sampla II	D: 220	64470
-							La	b Sample II		
ate Collecte									IVI	atrix: So
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			44183	09/15/20 20:21	OEL4	ELLE
-										
lient Samı	ole ID: SB-	5A-100					La	b Sample II	D: 320-	64470-
							La	b Sample II		
Date Collecte	d: 09/09/20 0	9:47					La			atrix: So
Date Collecte	d: 09/09/20 0 d: 09/10/20 1	9:47 1:05		Dil	Initial	Final			Ма	atrix: So
Date Collecte Date Received	d: 09/09/20 0 d: 09/10/20 1 Batch	9:47 1:05 Batch	Run	Dil	Initial Amount	Final	Batch	P Prepared	Ma ercent S	atrix: So olids: 9
Date Collecte Date Received Prep Type	d: 09/09/20 0 d: 09/10/20 1 Batch Type	9:47 1:05 Batch Method	Run	Dil Factor	Amount	Amount	Batch Number	P Prepared or Analyzed	Ma ercent S Analyst	atrix: So olids: 90
Date Collecter Date Received Prep Type Total/NA	d: 09/09/20 0 d: 09/10/20 1 Batch Type Prep	9:47 1:05 Batch Method SHAKE	Run		Amount 1.02 g	Amount 4 mL	Batch Number 45095	Prepared or Analyzed 09/17/20 18:17	Ma ercent S Analyst NP8L	atrix: So olids: 9 - Lab ELLE
Date Collecter Date Received Prep Type Total/NA Total/NA	d: 09/09/20 0 d: 09/10/20 1 Batch Type Prep Cleanup	9:47 1:05 Batch Method SHAKE Extract Aliquot	Run	Factor	Amount	Amount	Batch Number 45095 45100	Prepared or Analyzed 09/17/20 18:17 09/17/20 18:24	Ma ercent S Analyst NP8L NP8L	atrix: So olids: 90 <u>Lab</u> ELLE ELLE
Date Collecter Date Received Prep Type Total/NA Total/NA Total/NA	d: 09/09/20 0 d: 09/10/20 1 Batch Type Prep Cleanup Analysis	9:47 1:05 Batch SHAKE Extract Aliquot EPA 537 (Mod)	Run		Amount 1.02 g	Amount 4 mL	Batch Number 45095 45100 46642	Prepared or Analyzed 09/17/20 18:17 09/17/20 18:24 09/23/20 02:29	Ma ercent S Analyst NP8L NP8L GG3Y	Lab ELLE ELLE ELLE ELLE
Total/NA Total/NA Total/NA Client Sam	d: 09/09/20 0 d: 09/10/20 1 Batch Type Prep Cleanup Analysis	9:47 1:05 Batch Method SHAKE Extract Aliquot EPA 537 (Mod) 5A-110	Run	Factor	Amount 1.02 g	Amount 4 mL	Batch Number 45095 45100 46642	Prepared or Analyzed 09/17/20 18:17 09/17/20 18:24	Ma ercent S Analyst NP8L NP8L GG3Y	Lab ELLE ELLE ELLE ELLE
Prep Type Total/NA Total/NA Total/NA Total/NA	d: 09/09/20 0 d: 09/10/20 1 Batch Type Prep Cleanup Analysis Die ID: SB- d: 09/09/20 1	9:47 1:05 Batch Method SHAKE Extract Aliquot EPA 537 (Mod) 5A-110 3:09	Run	Factor	Amount 1.02 g	Amount 4 mL	Batch Number 45095 45100 46642	Prepared or Analyzed 09/17/20 18:17 09/17/20 18:24 09/23/20 02:29	Ma ercent S Analyst NP8L NP8L GG3Y D: 320-	Lab ELLE ELLE ELLE 64470-
Prep Type Total/NA Total/NA Total/NA Total/NA	d: 09/09/20 0 d: 09/10/20 1 Batch Type Prep Cleanup Analysis Die ID: SB- d: 09/09/20 1	9:47 1:05 Batch Method SHAKE Extract Aliquot EPA 537 (Mod) 5A-110 3:09	Run	Factor	Amount 1.02 g	Amount 4 mL	Batch Number 45095 45100 46642	Prepared or Analyzed 09/17/20 18:17 09/17/20 18:24 09/23/20 02:29	Ma ercent S Analyst NP8L NP8L GG3Y D: 320-	Lab ELLE ELLE ELLE ELLE ELLE
Prep Type Total/NA Total/NA Total/NA	d: 09/09/20 0 d: 09/10/20 1 Batch Type Prep Cleanup Analysis Die ID: SB- d: 09/09/20 1	9:47 1:05 Batch Method SHAKE Extract Aliquot EPA 537 (Mod) 5A-110 3:09	Run	Factor	Amount 1.02 g	Amount 4 mL	Batch Number 45095 45100 46642	Prepared or Analyzed 09/17/20 18:17 09/17/20 18:24 09/23/20 02:29	Ma ercent S Analyst NP8L NP8L GG3Y D: 320-	Lab ELLE ELLE ELLE ELLE ELLE
Prep Type Total/NA Total/NA Total/NA Total/NA	d: 09/09/20 0 d: 09/10/20 1 Batch Type Prep Cleanup Analysis DIE ID: SB- d: 09/09/20 1 d: 09/10/20 1	9:47 1:05 Batch Method SHAKE Extract Aliquot EPA 537 (Mod) 5A-110 3:09 1:05	Run	Factor 1	Amount 1.02 g 2 mL	Amount 4 mL 1 mL	Batch Number 45095 45100 46642 La	Prepared or Analyzed 09/17/20 18:17 09/17/20 18:24 09/23/20 02:29 b Sample I	Ma ercent S Analyst NP8L NP8L GG3Y D: 320-	Lab ELLE ELLE ELLE ELLE ELLE
Prep Type Total/NA Total/NA Total/NA Client Sam Date Collecte Date Received	d: 09/09/20 0 d: 09/10/20 1 Batch Type Prep Cleanup Analysis DIE ID: SB- d: 09/09/20 1 d: 09/10/20 1 Batch	9:47 1:05 Batch Method SHAKE Extract Aliquot EPA 537 (Mod) 5A-110 3:09 1:05 Batch		Factor 1 Dil	Amount 1.02 g 2 mL	Amount 4 mL 1 mL	Batch <u>Number</u> 45095 45100 46642 La Batch	Prepared or Analyzed 09/17/20 18:17 09/17/20 18:24 09/23/20 02:29 b Sample II Prepared	Ma ercent S Analyst NP8L GG3Y D: 320- Ma	Lab ELLE ELLE ELLE 64470- atrix: So
Prep Type Total/NA Total/NA Total/NA Client Sam Date Collecte Date Received Prep Type Total/NA	d: 09/09/20 0 d: 09/10/20 1 Batch Type Prep Cleanup Analysis DIE ID: SB- d: 09/09/20 1 d: 09/10/20 1 Batch Type Analysis	9:47 1:05 Batch Method SHAKE Extract Aliquot EPA 537 (Mod) 5A-110 3:09 1:05 Batch Method Moisture		Factor 1 Dil Factor	Amount 1.02 g 2 mL	Amount 4 mL 1 mL	Batch Number 45095 45100 46642 La Batch Number 44183	Prepared or Analyzed 09/17/20 18:17 09/17/20 18:24 09/23/20 02:29 b Sample II Prepared or Analyzed 09/15/20 20:21	Ma ercent S Analyst NP8L GG3Y D: 320- Ma Analyst OEL4	Lab ELLE ELLE ELLE 64470- atrix: So
Prep Type Total/NA Total/NA Total/NA Client Sam Date Collecter Date Received Prep Type Total/NA	d: 09/09/20 0 d: 09/10/20 1 Batch Type Prep Cleanup Analysis DIE ID: SB- d: 09/09/20 1 d: 09/10/20 1 Batch Type Analysis DIE ID: SB-	9:47 1:05 Batch Method SHAKE Extract Aliquot EPA 537 (Mod) 5A-110 3:09 1:05 Batch Method Moisture 5A-110		Factor 1 Dil Factor	Amount 1.02 g 2 mL	Amount 4 mL 1 mL	Batch Number 45095 45100 46642 La Batch Number 44183	Prepared or Analyzed 09/17/20 18:17 09/17/20 18:24 09/23/20 02:29 b Sample II Prepared or Analyzed	Ma ercent S NP8L NP8L GG3Y D: 320- Ma Analyst OEL4 D: 320-	Lab ELLE ELLE ELLE 64470- atrix: So Lab ELLE 64470-
Prep Type Total/NA Total/NA Total/NA Total/NA Client Samp Date Collecter Prep Type Total/NA	d: 09/09/20 0 d: 09/10/20 1 Batch Type Prep Cleanup Analysis DIE ID: SB- d: 09/09/20 1 Batch Type Analysis DIE ID: SB- d: 09/09/20 1	9:47 1:05 Batch Method SHAKE Extract Aliquot EPA 537 (Mod) 5A-110 3:09 1:05 Batch Method Moisture 5A-110 3:09		Factor 1 Dil Factor	Amount 1.02 g 2 mL	Amount 4 mL 1 mL	Batch Number 45095 45100 46642 La Batch Number 44183	Prepared or Analyzed 09/17/20 18:17 09/17/20 18:24 09/23/20 02:29 b Sample II Prepared or Analyzed 09/15/20 20:21 b Sample II	Ma ercent S NP8L NP8L GG3Y D: 320- Ma OEL4 D: 320- Ma	Lab ELLE ELLE ELLE 64470- atrix: So <u>Lab</u> ELLE 64470- atrix: So
Prep Type Total/NA Total/NA Total/NA Client Sam Date Collecte Date Received Prep Type Total/NA	d: 09/09/20 0 d: 09/10/20 1 Batch Type Prep Cleanup Analysis DIE ID: SB- d: 09/09/20 1 d: 09/10/20 1 Batch Type Analysis DIE ID: SB- d: 09/09/20 1 d: 09/09/20 1 d: 09/10/20 1	9:47 1:05 Batch Method SHAKE Extract Aliquot EPA 537 (Mod) 5A-110 3:09 1:05 Batch Method Moisture 5A-110 3:09 1:05		Factor 1 Dil Factor 1	Amount 1.02 g 2 mL Initial Amount	Amount 4 mL 1 mL	Batch <u>Number</u> 45095 45100 46642 La Batch <u>Number</u> 44183 La	Prepared or Analyzed 09/17/20 18:17 09/17/20 18:24 09/23/20 02:29 b Sample II Prepared or Analyzed 09/15/20 20:21 b Sample II	Ma ercent S NP8L NP8L GG3Y D: 320- Ma Analyst OEL4 D: 320-	Lab ELLE ELLE ELLE 64470- atrix: So <u>Lab</u> ELLE 64470- atrix: So
Date Collecter Date Received Prep Type Total/NA Total/NA Total/NA Client Sam Date Collecter Date Received Prep Type Total/NA Client Sam Date Collecter Date Collecter Date Collecter Date Collecter	d: 09/09/20 0 d: 09/10/20 1 Batch Type Prep Cleanup Analysis DIE ID: SB- d: 09/09/20 1 Batch Type Analysis DIE ID: SB- d: 09/09/20 1 d: 09/09/20 1 d: 09/10/20 1 Batch	9:47 1:05 Batch Method SHAKE Extract Aliquot EPA 537 (Mod) 5A-110 3:09 1:05 Batch Method Moisture 5A-110 3:09 1:05 Batch Batch	Run	Factor 1 Dil Factor 1 Dil	Amount 1.02 g 2 mL Initial Amount Initial	Amount 4 mL 1 mL Final Amount Final	Batch Number 45095 45100 46642 La Batch Number 44183 La Batch	Prepared or Analyzed 09/17/20 18:17 09/17/20 18:24 09/23/20 02:29 b Sample II Prepared or Analyzed 09/15/20 20:21 b Sample II Prepared Prepared	Ma ercent S Analyst NP8L GG3Y D: 320- Ma OEL4 D: 320- Ma ercent S	Lab ELLE ELLE 64470- atrix: So 64470- atrix: So olids: 90
Prep Type Total/NA Total/NA Total/NA Client Sam Date Collecte Date Received Prep Type Total/NA	d: 09/09/20 0 d: 09/10/20 1 Batch Type Prep Cleanup Analysis DIE ID: SB- d: 09/09/20 1 Batch Type Analysis DIE ID: SB- d: 09/09/20 1 d: 09/10/20 1 Batch Type	9:47 1:05 Batch Method SHAKE Extract Aliquot EPA 537 (Mod) 5A-110 3:09 1:05 Batch Method 3:09 1:05 Batch Method Moisture 5A-110 3:09 1:05 Batch Method		Factor 1 Dil Factor 1	Amount 1.02 g 2 mL Initial Amount Initial Amount	Amount 4 mL 1 mL Final Amount	Batch Number 45095 45100 46642 La Batch Number 44183 La Batch Number	Prepared or Analyzed 09/17/20 18:17 09/17/20 18:24 09/23/20 02:29 b Sample II Prepared or Analyzed 09/15/20 20:21 b Sample II Prepared or Analyzed Prepared or Analyzed	Ma ercent S Analyst NP8L NP8L GG3Y D: 320- Ma OEL4 D: 320- Ma ercent S Analyst	Lab ELLE ELLE ELLE 64470- atrix: So olids: 90 Lab
Prep Type Total/NA Total/NA Total/NA Client Samp Date Collected Date Received Prep Type Total/NA Client Samp Date Collected Date Collected Date Received Prep Type Total/NA Client Samp Date Collected Date Received Prep Type Total/NA	d: 09/09/20 0 d: 09/10/20 1 Batch Type Prep Cleanup Analysis DIE ID: SB- d: 09/09/20 1 Batch Type Analysis DIE ID: SB- d: 09/09/20 1 d: 09/10/20 1 Batch Type Prep Cleanup Analysis	9:47 1:05 Batch Method SHAKE Extract Aliquot EPA 537 (Mod) 5A-110 3:09 1:05 Batch Method 3:09 1:05 Batch Method 3:09 1:05	Run	Factor 1 Dil Factor 1 Dil	Amount 1.02 g 2 mL Initial Amount Initial Amount Initial Amount 1.04 g	Amount 4 mL 1 mL Final Amount Final Amount 4 mL	Batch Number 45095 45100 46642 La Batch Number 44183 La Batch Number 44183 La Batch Number 45095	Prepared or Analyzed 09/17/20 18:17 09/17/20 18:24 09/23/20 02:29 b Sample II Prepared 09/15/20 20:21 b Sample II Prepared or Analyzed 09/17/20 18:17	Ma ercent S Analyst NP8L GG3Y D: 320- Ma OEL4 D: 320- Ma ercent S Analyst NP8L	Lab ELLE ELLE 64470- atrix: So Olids: 90 Lab ELLE
Prep Type Total/NA Total/NA Total/NA Client Sam Date Collecte Date Received Prep Type Total/NA	d: 09/09/20 0 d: 09/10/20 1 Batch Type Prep Cleanup Analysis DIE ID: SB- d: 09/09/20 1 Batch Type Analysis DIE ID: SB- d: 09/09/20 1 d: 09/10/20 1 Batch Type	9:47 1:05 Batch Method SHAKE Extract Aliquot EPA 537 (Mod) 5A-110 3:09 1:05 Batch Method 3:09 1:05 Batch Method Moisture 5A-110 3:09 1:05 Batch Method	Run	Factor 1 Dil Factor 1 Dil	Amount 1.02 g 2 mL Initial Amount Initial Amount	Amount 4 mL 1 mL Final Amount	Batch Number 45095 45100 46642 La Batch Number 44183 La Batch Number	Prepared or Analyzed 09/17/20 18:17 09/17/20 18:24 09/23/20 02:29 b Sample II Prepared or Analyzed 09/15/20 20:21 b Sample II Prepared or Analyzed Prepared or Analyzed	Ma ercent S Analyst NP8L GG3Y D: 320- Ma OEL4 D: 320- Ma ercent S Analyst NP8L NP8L NP8L	Lab ELLE ELLE ELLE 64470- atrix: So olids: 9

Lab Sample ID: 320-64 Matri

1470-12 rix: Solid	3
	4
Lab	5
4470-12	6
rix: Solid ids: 98.7	7
	8
Lab ELLE	9
ELLE ELLE	10
4470-13 rix: Solid	11
	12
Lab ELLE	13
4470-13	14

Client Sample ID: SB-5A-120 Date Collected: 09/09/20 14:50 Date Received: 09/10/20 11:05

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			44183	09/15/20 20:21	OEL4	ELLE
Client Sam	ple ID: SB-	5A-120					La	b Sample II	D: 320-0	64470-1
Date Collecte	d: 09/09/20 1	4:50							Ма	atrix: Sol
Date Receive	d: 09/10/20 1	1:05						P	ercent S	olids: 98
_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep			1 40101	1.01 g	4 mL	45095	09/17/20 18:17	NP8L	ELLE
Total/NA	Cleanup	Extract Aliquot			2 mL	1 mL	45100	09/17/20 18:24	NP8I	ELLE
Total/NA	Analysis	EPA 537 (Mod)		1	2	1	46642	09/23/20 02:47		ELLE
Date Collecte	d: 09/09/20 1	5:35					La	b Sample II		
Client Sam Date Collecte Date Receive	d: 09/09/20 1 d: 09/10/20 1	5:35 1:05		Dil	Initial	Final				
Date Collecte Date Receive	d: 09/09/20 1 d: 09/10/20 1 Batch	5:35 1:05 Batch	Run	Dil	Initial Amount	Final	Batch	Prepared	Ма	atrix: Sol
Date Collecte	d: 09/09/20 1 d: 09/10/20 1	5:35 1:05	Run	Dil Factor	Initial Amount	Final Amount			Ma	64470-1 atrix: Sol
Date Collecte Date Received Prep Type Total/NA	d: 09/09/20 1 d: 09/10/20 1 Batch Type Analysis	5:35 1:05 Batch Method Moisture	Run	Factor			Batch Number 44183	Prepared or Analyzed 09/15/20 20:21	Ma Analyst OEL4	Lab ELLE
Date Collecte Date Receive Prep Type Total/NA Client Sam	d: 09/09/20 1 d: 09/10/20 1 Batch Type Analysis ple ID: SB-	5:35 1:05 Batch Method Moisture 5A-130	Run	Factor			Batch Number 44183	Prepared or Analyzed	Ma Analyst OEL4 D: 320-0	Lab ELLE
Date Collecte Date Receive Prep Type Total/NA Client Sam Date Collecte	d: 09/09/20 1 d: 09/10/20 1 Batch Type Analysis ple ID: SB- d: 09/09/20 1	5:35 1:05 Batch Method Moisture 5A-130 5:35	Run	Factor			Batch Number 44183	Prepared or Analyzed 09/15/20 20:21 b Sample II	Ma Analyst OEL4 D: 320-(Ma	Lab ELLE 64470-1
Date Collecte Date Receive Prep Type	d: 09/09/20 1 d: 09/10/20 1 Batch Type Analysis ple ID: SB- d: 09/09/20 1 d: 09/10/20 1	5:35 1:05 Batch Method Moisture 5A-130 5:35 1:05	Run	Factor 1	Amount	Amount	Batch Number 44183	Prepared or Analyzed 09/15/20 20:21 b Sample II	Ma Analyst OEL4 D: 320-(Ma	Lab ELLE 64470-1 atrix: Sol
Date Collecte Date Received Prep Type Total/NA Client Sam Date Collecte Date Received	d: 09/09/20 1 d: 09/10/20 1 Batch <u>Type</u> Analysis ple ID: SB- d: 09/09/20 1 d: 09/10/20 1 Batch	5:35 1:05 Batch Method Moisture 5A-130 5:35 1:05 Batch		Factor 1 Dil	Amount	Amount	Batch <u>Number</u> 44183 La Batch	Prepared or Analyzed 09/15/20 20:21 b Sample II P Prepared	Ma Analyst OEL4 D: 320-(Ma ercent S	Lab ELLE 64470-1 atrix: Sol olids: 84
Date Collecte Date Received Prep Type Total/NA Client Sam Date Collecte Date Received Prep Type	d: 09/09/20 1 d: 09/10/20 1 Batch Type Analysis ple ID: SB- d: 09/09/20 1 d: 09/10/20 1 Batch Type	5:35 1:05 Batch Method Moisture 5A-130 5:35 1:05 Batch Method	Run	Factor 1	Amount Initial Amount	Amount Final Amount	Batch Number 44183 La Batch Number	Prepared or Analyzed 09/15/20 20:21 b Sample II Prepared or Analyzed	Ma Analyst OEL4 D: 320-(Ma ercent S	Lab ELLE 64470-1 atrix: Sol olids: 84
Prep Type Total/NA Client Sam Date Collecte Date Received Prep Type Total/NA	d: 09/09/20 1 d: 09/10/20 1 Batch Type Analysis ple ID: SB- d: 09/09/20 1 d: 09/10/20 1 Batch Type Prep	5:35 1:05 Batch Method Moisture 5A-130 5:35 1:05 Batch Method SHAKE		Factor 1 Dil	Amount Initial Amount 1.03 g	Amount Final Amount 4 mL	Batch <u>Number</u> 44183 La Batch <u>Number</u> 45095	Prepared or Analyzed 09/15/20 20:21 b Sample II Prepared or Analyzed 09/17/20 18:17	Ma <u>Analyst</u> OEL4 D: 320-(Ma ercent S <u>Analyst</u> NP8L	atrix: Sol Lab ELLE 64470-1 atrix: Sol olids: 84 Lab ELLE
Date Collecte Date Received Prep Type Total/NA Client Sam Date Collecte Date Received Prep Type	d: 09/09/20 1 d: 09/10/20 1 Batch Type Analysis ple ID: SB- d: 09/09/20 1 d: 09/10/20 1 Batch Type	5:35 1:05 Batch Method Moisture 5A-130 5:35 1:05 Batch Method		Factor 1 Dil	Amount Initial Amount	Amount Final Amount	Batch Number 44183 La Batch Number	Prepared or Analyzed 09/15/20 20:21 b Sample II Prepared or Analyzed	Ma Analyst OEL4 D: 320-0 Ma ercent S Analyst NP8L NP8L NP8L	Lab ELLE 64470-1 atrix: Sol olids: 84

Laboratory References:

ELLE = Eurofins Lancaster Laboratories Env, LLC, 2425 New Holland Pike, Lancaster, PA 17601, TEL (717)656-2300

Client: Geosyntec Co Project/Site: PFAS - H		ık Airport		Job ID: 320-64470-
Laboratory: Euro Unless otherwise noted, all			nv, LLC each accreditation/certification below.	
Authority		Program	Identification Number	Expiration Date
California		State	2792	01-31-21
The following analytes the agency does not c		eport, but the laboratory is	not certified by the governing authority.	This list may include analytes for which
Analysis Method	Prep Method	Matrix	Analyte	
Moisture		Solid	Percent Moisture	
Moisture		Solid	Percent Solids	

Accreditation/Certification Summary

Method Summary

Client: Geosyntec Consultants, Inc. Project/Site: PFAS - Hollywood Burbank Airport

5
8
9
12
13

Method	Method Description	Protocol	Laboratory
EPA 537 (Mod)	EPA 537 mod QSM 5.1, Table B-15	EPA	ELLE
Moisture	Percent Moisture	EPA	ELLE
537 IDA	EPA 537 Isotope Dilution	EPA	ELLE
Extract Aliquot	Preparation, Extract Aliquot	None	ELLE
SHAKE	Shake Extraction with Ultrasonic Bath Extraction	SW846	ELLE

Protocol References:

EPA = US Environmental Protection Agency

None = None

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

ELLE = Eurofins Lancaster Laboratories Env, LLC, 2425 New Holland Pike, Lancaster, PA 17601, TEL (717)656-2300

Sample Summary

Client: Geosyntec Consultants, Inc. Project/Site: PFAS - Hollywood Burbank Airport

Lab Sample ID	Client Sample ID	Matrix	Collected	Received											
320-64470-1	EB-200208	Water	09/08/20 14:10	09/10/20 11:05											
20-64470-2	FB-200208	Water	09/08/20 12:20	09/10/20 11:05											
20-64470-3	SB-5A-60	Solid	09/08/20 13:25	09/10/20 11:05											
20-64470-4	SB-5A-70	Solid	09/08/20 14:35	09/10/20 11:05											
20-64470-5	EB-200209	Water	09/09/20 11:04	09/10/20 11:05											
20-64470-6	FB-200209	Water	09/09/20 11:08	09/10/20 11:05											
20-64470-7	SB-5A-80	Solid	09/09/20 07:39	09/10/20 11:05											
)-64470-8	SB-5A-80-DUP	Solid	09/09/20 07:39	09/10/20 11:05											
0-64470-9	SB-5A-90	Solid	09/09/20 08:45	09/10/20 11:05											
0-64470-10	SB-5A-100	Solid	09/09/20 09:47	09/10/20 11:05											
0-64470-11	SB-5A-110	Solid	09/09/20 13:09	09/10/20 11:05											
20-64470-12	SB-5A-120	Solid	09/09/20 14:50	09/10/20 11:05											
20-64470-13	SB-5A-130	Solid	09/09/20 15:35	09/10/20 11:05											
eur eur	ofins	QC	Bill to/Report		_	AIN OF Page	CU:	STOR	- 1111	-644	70 Cha	ain of	Custody		MATRIX CODES
--	--	--------------------	---	------------------	-----------	-------------------------	-------	-------	-----------------	----------------	------------	------------------	----------	---	---
02 Electronic Drive	Dhopo	215-355-3900												Ascorbic/HCL Vials #HCI Vials	DW: DRINKING WATER
Horsham, PA 19044-		215-355-7231	Sampling Si	te Address	if differ	rent) Include	State			-					GW: GROUND WATER
An an and the state of the state	Geosyntec Consul				10.00									Na OH/Zn acetate pH	SO: SOIL
	65 N. Raymond Av		Du	ban		A								HNO3 pH	SL: SLUDGE
	Suite 200								-	-			#	H2SO4 pH	OIL: OIL
	Pasadena, CA 911	03	P.O. No.	WR2693	- 02A	P	WSID	#:		-				NaOH pH	SOL: NON SOIL SOLID
Contraction and a second second second	626-449-0664		Quote #	570	05	5935						1		Unpreserved	MI: MISCELLANEOUS
	Mital Desai		e-mail: m										#	HCI #NH4CI #MeOH	X: OTHER
PROJECT			Colle	ction	G	n		Nur	mber o	of Containers				#DI Water	
FIELD ID			Date	Military Time	R A	O Matrix M Code P	Total	H C I	V I a C s	H N a D D H	n N A P	B A C T		ANALYSIS REQUESTED	Field pH, Temp (°C), DO, Cl2, Cond. etc.
EB- 2000	108		9/8/20	1410	X	ww	2				2		PFAS (23 analytes as required by CA ELAP)	
FB- 2000	208		1	1220		ww	2				3		PFAS (23 analytes as required by CA ELAP)	1
SB-5A- 60				1325	X	SO	1				1		PFAS (23 analytes as required by CA ELAP)	
SB-5A- 70				1435		SO	1				1			23 analytes as required by CA ELAP)	
SB-5A- 70)			1435		SO	1				1		PFAS (23 analytes as required by CA ELAP)	MSIMSD
SB-5A-	(D)			1	X	SO	1				1		PFAS (23 analytes as required by CA ELAP)	
38-5A-	5				X	SO	1				1		PFAS ((23 analytes as required by CA ELAP)	
	9				X	SO	1		-	==	1	-	PFAS ((23 analytes as required by CA ELAP)	
SB-5A- 6	in the second se				X	SO	1				1		PFAS ((23 analytes as required by CA ELAP)	
SB-5A- (9		+		X	SO	1				1		PFAS ((23 analytes as required by CA ELAP)	
SAMPLEDBY: (Nam	ie/Company)	TAT: STAN	DARD (10 D/	AY)	Rep	ort Format:	Sta	ndard		I-RD		SRF	P-RDD	Field Parameters Analyz	ed By:
J. Loper, Geosynteo	1	or DUE DATE	1	1	× S	tandard + Q	CD	Forms	R	EDD				Initials	Date/Time:
		Please call for pr													
SAMPLE CUST RELINQUISHED BY SA		DATE		D BELOW		SE FULL LE	GAL	SIGNA	ATUR		ATE	AND	MILITARY	TIME (24 HOUR CLOCK, I.E. 8AM IS 08) DELIVERY: DEQCCOURIER DCLIENT	00, 4 PM IS 1600) Custody Seal Number
1. Julia Lo	ard	91820	1726	1.	72										Cuttory Courrainser
RELINQUISHED BY 2.	0,000	DATE	TIME	RECEIVED	1			¢			ATE		TIME	Rec'd Temp. 2.2 Initials	/N Location:
RELINQUISHED BY 3.		DATE	a second s	RECEIVED	BX					D	ATE		TIME	COMMENTS:	
RELINQUISHED BY		DATE		RECEIVED	BY \	1				D.	ATE		TIME	1	
RELINQUISHED BY 5.	/	DATE	-	BECEIVED	BY	~		C	11		UO		TIME	Hazardous: yes / no	
TIPE A	6		1	1		_		41 of	-	100					9/30/202

'9

eu	rofins		4			CH	IAIN O Page_	FCU	IST		Y					Lab LIN	/IS No:	MATRIX CODES
		QC	Bill to/R	leport	to (if differ	rent)			_		-			-		LAB US	SE ONLY:	
02 Electronic Driv	ve Phone	e: 215-355-3900		_					-							# A	scorbic/HCL Vials #HCI Vials	DW: DRINKING WATER
Horsham, PA 1904		215-355-7231	Samplin	na Site	e Address	(if diffe	erent) Inclu	de State				-	-			· · · · · · · · · · · · · · · · · · ·	Na2S2O3	WW WASTEWATER
Client/Acct. No.	Geosyntec Cons	and denter of the second	-	_			CA						-	-			la OH/Zn acetate pH	
Address	65 N. Raymond		-	120	AF LEU	IL	CA				-						HNO3 pH	SO: SOIL
hudless	Suite 200	Ave				-										# _ H	H2SO4 pH	SL: SLUDGE OIL: OIL
City/State/Zip	Pasadena, CA 91	1103	PON	No V	VR2693	- 02	A	PWSI	D #	-		-					laOH pH	SOL: NON SOIL SOLID
hone/Fax	626-449-0664	105	-		5700	-		1 1101	D 11.	-		-					Inpreserved	MI: MISCELLANEOUS
lient Contact:	Mital Desai				esai@ge				11	-		-				#H		X: OTHER
PROJECT	THILL D COLL		-	ollec		TT		T		Nur	iber o	of Co	ntaine	ers		1		A. STORY
1 North Control of Con			-				C Matri	*	H	H	V	HII	IZ	TUT	B		#DI Water	
FIELD ID			Date	е	Military Time	A	M Code	e Tota	0	1	a l s		A C	N P R E	A C T		ANALYSIS REQUESTED	Field pH, Temp (°C), DO, Cl2, Cond. etc.
EB- 200	0909		9/91	20	1104	х	ww	a.	2			T		12		PFAS (2	23 analytes as required by CA ELAP)	
FB- 200	909		1		1108	X	ww	#2	-					12		PFAS (2	23 analytes as required by CA ELAP)	
SB-5A- 80	S				0739	x	SO	1		T		T		1	1	PFAS (2	23 analytes as required by CA ELAP)	
SB-5A- 80	- DUP				6739	1 I	SO	1					T	1		PFAS (2	23 analytes as required by CA ELAP)	
SB-5A- 91	>				0845		SO	1	T					1		PFAS (2	23 analytes as required by CA ELAP)	
SB-5A-10	0			00	14+	X	SO	1		T				1		PFAS (2	23 analytes as required by CA ELAP)	•
SB-5A- 1	10			6	1307	X	SO	1	T					1		PFAS (2	23 analytes as required by CA ELAP)	
SB-5A- 12	DX				1450		SO	1	-	-				1		PFAS (2	23 analytes as required by CA ELAP)	
SB-5A- 1	30				1535		SO	1						1		PFAS (2	23 analytes as required by CA ELAP)	
SB-SA-	69		1	1	1	X	SO	1		\square		1	T	1		PFAS (2	23 analytes as required by CA ELAP)	
AMPLEDBY: (Na	ame/Company)	TAT: STANE	DARD (1)	D DAY	Y)	Rep	ort Forma	t: 🗆 Sta	Indar	d	DN.	J-RC	D		RP-RC		Field Parameters Analyze	d By:
Loper, Geosynt	80	or DUE DATE			1	-	Standard +				N							ate/Time:
Loper, Geosyna	50	Please call for pr	icing and i	availal	bility for ru	sh (<1	0 day) turna	round and	for a	all but	stan	dard	report	ing for	rmat.			
SAMPLE CU	STODY EXCHANGES	MUST BE DOC	CUMEN	TED	BELOW	/. U	SE FULL	LEGAL	. SIC	SNA'	TUR	E, 1	DAT	E AN	D MI	LITARY 1	TIME (24 HOUR CLOCK, I.E. 8AM IS 080	0, 4 PM IS 1600)
Julia Lo	SAMPLER	_ BATELIO	TIME PILI	3 RI	ECEIVED	BY							ATE			ME	DELIVERY: DEQC COURIER DELIVERY: DEQC COURIER DELIVERY: DEQC COURIER	Custody Seal Number
ELINQUISHED BY		DATE	TIME	RI 2	ECEIVED	BY						I	ATE	-	TIN	ME	Rec'd Temp: 22 Initials PM Ice	DIN Location:
ELINQUISHED BY		DATE	TIME		ECEIVED	BY	-	-	-	-		C	ATE		TIN	ME	COMMENTS: 34	
RELINQUISHED BY	/	DATE	TIME		ECEIVED	BY			-			C	ATE		TIN		51	
TELINQUISHED BY	/	DATE	TIME		ECEIVED	BY	1	2		-		E	ATE	12	TIN	MEINC		
non				0.	-		'V	V				M	110	11	0	FIOS	Hazardous: yes / no	

13

Client: Geosyntec Consultants, Inc.

Logi List Crea

Job Number: 320-64470-	1
------------------------	---

Login Number: 64470 List Number: 2 Creator: Phillips, Ann-Marie E		List Source: Eurofins Lancaster Laboratories Env List Creation: 09/10/20 05:46 PM					
Question	Answer	Comment					
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A						
The cooler's custody seal is intact.	N/A						
The cooler or samples do not appear to have been compromised or tampered with.	True						
Samples were received on ice.	True						
Cooler Temperature is acceptable (=6C, not frozen).</td <td>True</td> <td></td>	True						
Cooler Temperature is recorded.	True						
WV: Container Temperature is acceptable (=6C, not frozen).</td <td>N/A</td> <td></td>	N/A						
WV: Container Temperature is recorded.	N/A						
COC is present.	True						
COC is filled out in ink and legible.	True						
COC is filled out with all pertinent information.	True						
There are no discrepancies between the containers received and the COC.	True						
Samples are received within Holding Time (excluding tests with immediate HTs)	True						
Sample containers have legible labels.	True						
Containers are not broken or leaking.	True	•					
Sample collection date/times are provided.	True						
Appropriate sample containers are used.	True						
Sample bottles are completely filled.	True						
There is sufficient vol. for all requested analyses.	True						
Multiphasic samples are not present.	True						
Samples do not require splitting or compositing.	N/A						
Is the Field Sampler's name present on COC?	True						
Sample Preservation Verified.	N/A						
Residual Chlorine Checked.	N/A						
Sample custody seals are intact.	N/A						

🔅 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Sacramento 880 Riverside Parkway West Sacramento, CA 95605 Tel: (916)373-5600

Laboratory Job ID: 320-64510-1

Client Project/Site: PFAS - Hollywood Burbank Airport

For:

Geosyntec Consultants, Inc. 65 N. Raymond Avenue Suite 200 Pasadena, California 91103

Attn: Mital Desai

2. G. Typ

Authorized for release by: 9/18/2020 12:27:25 PM

Laura Turpen, Project Manager I (916)374-4414 Laura.Turpen@Eurofinset.com

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Isotope Dilution Summary	12
QC Sample Results	14
QC Association Summary	23
Lab Chronicle	24
Certification Summary	26
Method Summary	27
Sample Summary	28
Chain of Custody	29
Receipt Checklists	30

Client: Geosyntec Consultants, Inc. Project/Site: PFAS - Hollywood Burbank Airport

3

5

Qualifiers

LCMS

Qualifier J

Qualifier Description Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	
TNTC	Too Numerous To Count	

Job ID: 320-64510-1

Laboratory: Eurofins TestAmerica, Sacramento

Narrative

Job Narrative 320-64510-1

Comments

No additional comments.

Receipt

The samples were received on 9/11/2020 10:15 AM; the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 2.0° C.

LCMS

Method EPA 537(Mod): The first level standard from the initial calibration curve is used to evaluate the tune criteria. The instrument mass windows are set at +/- 0.5amu; therefore, detection of the analyte serves as verification that the assigned mass is within +/- 0.5amu of the true value, which meets the DoD/DOE QSM tune criterion.

Method EPA 537(Mod): Internal standard (ISTD) response of 13C2 PFOA for the following sample was outside control limits: (320-64510-A-4-B MS). Because the associated parent and matrix spike duplicate sample has ISTD response within limits and the matrix spike target analytes meet % recovery limits, the data is reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

Method 3535: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with: preparation batch 320-412160.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Detection Summary		1
Client: Geosyntec Consultants, Inc. Project/Site: PFAS - Hollywood Burbank Airport	Job ID: 320-64510-1	2
Client Sample ID: EB-200910	Lab Sample ID: 320-64510-1	
No Detections.		
Client Sample ID: FB-200910	Lab Sample ID: 320-64510-2	4
No Detections.		5
Client Sample ID: SB-5A-140	Lab Sample ID: 320-64510-3	6
No Detections.		
Client Sample ID: SB-5A-150	Lab Sample ID: 320-64510-4	7
No Detections.		8
Client Sample ID: SB-5A-160	Lab Sample ID: 320-64510-5	9
No Detections.		10
		13

Client: Geosyntec Consultants, Inc. Project/Site: PFAS - Hollywood Burbank Airport

Client Sample ID: EB-200910 Date Collected: 09/10/20 12:20 Date Received: 09/11/20 10:15

Lab Sample ID: 320-64510-1 Matrix: Water

ater 4

Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	ND		4.5		ng/L		09/15/20 04:37	09/15/20 19:42	1
Perfluoropentanoic acid (PFPeA)	ND		1.8		ng/L			09/15/20 19:42	1
Perfluorohexanoic acid (PFHxA)	ND		1.8		ng/L		09/15/20 04:37	09/15/20 19:42	1
Perfluoroheptanoic acid (PFHpA)	ND		1.8		ng/L		09/15/20 04:37	09/15/20 19:42	1
Perfluorooctanoic acid (PFOA)	ND		1.8		ng/L		09/15/20 04:37	09/15/20 19:42	1
Perfluorononanoic acid (PFNA)	ND		1.8		ng/L		09/15/20 04:37	09/15/20 19:42	1
Perfluorodecanoic acid (PFDA)	ND		1.8		ng/L		09/15/20 04:37	09/15/20 19:42	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8		ng/L		09/15/20 04:37	09/15/20 19:42	1
Perfluorododecanoic acid (PFDoA)	ND		1.8		ng/L		09/15/20 04:37	09/15/20 19:42	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8		ng/L		09/15/20 04:37	09/15/20 19:42	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8		ng/L		09/15/20 04:37	09/15/20 19:42	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.8		ng/L		09/15/20 04:37	09/15/20 19:42	1
Perfluoropentanesulfonic acid	ND		1.8		ng/L		09/15/20 04:37	09/15/20 19:42	1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.8		ng/L		09/15/20 04:37	09/15/20 19:42	1
Perfluoroheptanesulfonic Acid	ND		1.8		ng/L		09/15/20 04:37	09/15/20 19:42	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.8		ng/L		09/15/20 04:37	09/15/20 19:42	1
Perfluorodecanesulfonic acid (PFDS)	ND		1.8		ng/L		09/15/20 04:37	09/15/20 19:42	1
Perfluorooctanesulfonamide (FOSA)	ND		1.8		ng/L		09/15/20 04:37	09/15/20 19:42	1
I-methylperfluorooctanesulfonamidoa etic acid (NMeFOSAA)	ND		4.5		ng/L		09/15/20 04:37	09/15/20 19:42	1
J-ethylperfluorooctanesulfonamidoac tic acid (NEtFOSAA)	ND		4.5		ng/L		09/15/20 04:37	09/15/20 19:42	1
k:2 FTS	ND		1.8		ng/L		09/15/20 04:37	09/15/20 19:42	1
2 FTS	ND		4.5		ng/L		09/15/20 04:37	09/15/20 19:42	1
3:2 FTS	ND		1.8		ng/L		09/15/20 04:37	09/15/20 19:42	1
sotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
I3C4 PFBA	88		50 - 150				09/15/20 04:37	09/15/20 19:42	1
13C5 PFPeA	88		50 - 150				09/15/20 04:37	09/15/20 19:42	1
3C2 PFHxA	86		50 - 150				09/15/20 04:37	09/15/20 19:42	1
3C4 PFHpA	88		50 - 150				09/15/20 04:37	09/15/20 19:42	1
3C4 PFOA	85		50 - 150				09/15/20 04:37	09/15/20 19:42	1
3C5 PFNA	91		50 - 150				09/15/20 04:37	09/15/20 19:42	1
3C2 PFDA	83		50 - 150				09/15/20 04:37	09/15/20 19:42	1
3C2 PFUnA	96		50 - 150				09/15/20 04:37	09/15/20 19:42	1
3C2 PFDoA	78		50 - 150				09/15/20 04:37	09/15/20 19:42	1
3C2 PFTeDA	73		50 - 150					09/15/20 19:42	
3C3 PFBS	96		50 - 150					09/15/20 19:42	1
802 PFHxS	95		50 - 150					09/15/20 19:42	1
3C4 PFOS	90 92		50 - 150 50 - 150					09/15/20 19:42	
3C8 FOSA	32 84		50 - 150 50 - 150					09/15/20 19:42	1
I3-NMeFOSAA	85		50 - 150 50 - 150					09/15/20 19:42	1
15-NEtFOSAA	94		50 - 150					09/15/20 19:42	-
12-6:2 FTS	126		50 - 150					09/15/20 19:42	1
M2-8:2 FTS	116		50 - 150				09/15/20 04:37	09/15/20 19:42	1

RL

4.5

MDL Unit

ng/L

D

Prepared

Client: Geosyntec Consultants, Inc. Project/Site: PFAS - Hollywood Burbank Airport

Method: EPA 537(Mod) - PFAS for QSM 5.1, Table B-15

Result Qualifier

ND

Client Sample ID: FB-200910 Date Collected: 09/10/20 12:23 Date Received: 09/11/20 10:15

Perfluorobutanoic acid (PFBA)

Analyte

loh	ın	320	-645 ⁻	10 1
JOD	ID.	3ZU	-040	10-1

Matrix: Water

Dil Fac

1

Lab Sample ID: 320-64510-2

09/15/20 04:37 09/15/20 19:51

Analyzed

	ND	4.5	ng/L	03/13/20 04.37	03/13/20 19.51	
Perfluoropentanoic acid (PFPeA)	ND	1.8	ng/L	09/15/20 04:37	09/15/20 19:51	1
Perfluorohexanoic acid (PFHxA)	ND	1.8	ng/L	09/15/20 04:37	09/15/20 19:51	1
Perfluoroheptanoic acid (PFHpA)	ND	1.8	ng/L	09/15/20 04:37	09/15/20 19:51	1
Perfluorooctanoic acid (PFOA)	ND	1.8	ng/L	09/15/20 04:37	09/15/20 19:51	1
Perfluorononanoic acid (PFNA)	ND	1.8	ng/L	09/15/20 04:37	09/15/20 19:51	1
Perfluorodecanoic acid (PFDA)	ND	1.8	ng/L	09/15/20 04:37	09/15/20 19:51	1
Perfluoroundecanoic acid (PFUnA)	ND	1.8	ng/L	09/15/20 04:37	09/15/20 19:51	1
Perfluorododecanoic acid (PFDoA)	ND	1.8	ng/L	09/15/20 04:37	09/15/20 19:51	1
Perfluorotridecanoic acid (PFTriA)	ND	1.8	ng/L	09/15/20 04:37	09/15/20 19:51	1
Perfluorotetradecanoic acid (PFTeA)	ND	1.8	ng/L	09/15/20 04:37	09/15/20 19:51	1
Perfluorobutanesulfonic acid (PFBS)	ND	1.8	ng/L	09/15/20 04:37	09/15/20 19:51	1
Perfluoropentanesulfonic acid (PFPeS)	ND	1.8	ng/L	09/15/20 04:37	09/15/20 19:51	1
Perfluorohexanesulfonic acid (PFHxS)	ND	1.8	ng/L	09/15/20 04:37	09/15/20 19:51	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND	1.8	ng/L	09/15/20 04:37	09/15/20 19:51	1
Perfluorooctanesulfonic acid (PFOS)	ND	1.8	ng/L	09/15/20 04:37	09/15/20 19:51	1
Perfluorodecanesulfonic acid (PFDS)	ND	1.8	ng/L	09/15/20 04:37	09/15/20 19:51	1
Perfluorooctanesulfonamide (FOSA)	ND	1.8	ng/L	09/15/20 04:37	09/15/20 19:51	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND	4.5	ng/L	09/15/20 04:37	09/15/20 19:51	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND	4.5	ng/L	09/15/20 04:37	09/15/20 19:51	1
4:2 FTS	ND	1.8	ng/L	09/15/20 04:37	09/15/20 19:51	1
4:2 FTS 6:2 FTS	ND ND	1.8 4.5	ng/L ng/L	09/15/20 04:37 09/15/20 04:37		1 1
			· · · · · · · · · · · · · · · · · · ·		09/15/20 19:51	
6:2 FTS	ND	4.5 1.8	ng/L	09/15/20 04:37	09/15/20 19:51	1
6:2 FTS 8:2 FTS	ND ND	4.5 1.8	ng/L	09/15/20 04:37 09/15/20 04:37	09/15/20 19:51 09/15/20 19:51 Analyzed	1 1
6:2 FTS 8:2 FTS Isotope Dilution	ND ND %Recovery	4.5 1.8 ualifier Limits	ng/L	09/15/20 04:37 09/15/20 04:37 Prepared	09/15/20 19:51 09/15/20 19:51 <u>Analyzed</u> 09/15/20 19:51	1 1 Dil Fac
6:2 FTS 8:2 FTS Isotope Dilution 13C4 PFBA	ND ND %Recovery 79	4.5 1.8 ualifier Limits 50 - 150	ng/L	09/15/20 04:37 09/15/20 04:37 Prepared 09/15/20 04:37	09/15/20 19:51 09/15/20 19:51 Analyzed 09/15/20 19:51 09/15/20 19:51	1 1 <u>Dil Fac</u> 1
6:2 FTS 8:2 FTS Isotope Dilution 13C4 PFBA 13C5 PFPeA	ND ND %Recovery 79 82	4.5 1.8 ualifier <u>Limits</u> 50 - 150 50 - 150	ng/L	09/15/20 04:37 09/15/20 04:37 Prepared 09/15/20 04:37 09/15/20 04:37	09/15/20 19:51 09/15/20 19:51 Analyzed 09/15/20 19:51 09/15/20 19:51 09/15/20 19:51	1 1 <u>Dil Fac</u> 1
6:2 FTS 8:2 FTS Isotope Dilution 13C4 PFBA 13C5 PFPeA 13C2 PFHxA	ND ND %Recovery 79 82 83	4.5 1.8 ualifier Limits 50 - 150 50 - 150 50 - 150	ng/L	09/15/20 04:37 09/15/20 04:37 Prepared 09/15/20 04:37 09/15/20 04:37 09/15/20 04:37	09/15/20 19:51 09/15/20 19:51 Analyzed 09/15/20 19:51 09/15/20 19:51 09/15/20 19:51	1 1 <u>Dil Fac</u> 1 1
6:2 FTS 8:2 FTS Isotope Dilution 13C4 PFBA 13C5 PFPeA 13C2 PFHxA 13C4 PFHpA	ND ND %Recovery Q 79 82 83 83 82	4.5 1.8 ualifier Limits 50 - 150 50 - 150 50 - 150 50 - 150	ng/L	09/15/20 04:37 09/15/20 04:37 Prepared 09/15/20 04:37 09/15/20 04:37 09/15/20 04:37	09/15/20 19:51 09/15/20 19:51 Analyzed 09/15/20 19:51 09/15/20 19:51 09/15/20 19:51 09/15/20 19:51	1 1 Dil Fac 1 1 1
6:2 FTS 8:2 FTS Isotope Dilution 13C4 PFBA 13C5 PFPeA 13C2 PFHxA 13C4 PFHpA 13C4 PFOA	ND ND %Recovery Q 82 83 82 75	4.5 1.8 ualifier Limits 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150	ng/L	09/15/20 04:37 09/15/20 04:37 Prepared 09/15/20 04:37 09/15/20 04:37 09/15/20 04:37 09/15/20 04:37 09/15/20 04:37	09/15/20 19:51 09/15/20 19:51 Analyzed 09/15/20 19:51 09/15/20 19:51 09/15/20 19:51 09/15/20 19:51 09/15/20 19:51	1 1 1 1 1 1 1 1
6:2 FTS 8:2 FTS Isotope Dilution 13C4 PFBA 13C5 PFPeA 13C2 PFHxA 13C4 PFHpA 13C4 PFOA 13C5 PFNA	ND ND %Recovery Q 82 83 82 75 81	4.5 1.8 ualifier Limits 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150	ng/L	09/15/20 04:37 09/15/20 04:37 Prepared 09/15/20 04:37 09/15/20 04:37 09/15/20 04:37 09/15/20 04:37 09/15/20 04:37	09/15/20 19:51 09/15/20 19:51 Analyzed 09/15/20 19:51 09/15/20 19:51 09/15/20 19:51 09/15/20 19:51 09/15/20 19:51 09/15/20 19:51	1 1 1 1 1 1 1 1 1 1
6:2 FTS 8:2 FTS Isotope Dilution 13C4 PFBA 13C5 PFPeA 13C2 PFHxA 13C4 PFHpA 13C4 PFOA 13C5 PFNA 13C5 PFNA 13C2 PFDA	ND ND %Recovery 82 83 82 75 81 78	4.5 1.8 ualifier Limits 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150	ng/L	09/15/20 04:37 09/15/20 04:37 Prepared 09/15/20 04:37 09/15/20 04:37 09/15/20 04:37 09/15/20 04:37 09/15/20 04:37 09/15/20 04:37	09/15/20 19:51 09/15/20 19:51 Analyzed 09/15/20 19:51 09/15/20 19:51 09/15/20 19:51 09/15/20 19:51 09/15/20 19:51 09/15/20 19:51 09/15/20 19:51	1 1 1 1 1 1 1 1 1 1
6:2 FTS 8:2 FTS Isotope Dilution 13C4 PFBA 13C5 PFPeA 13C2 PFHxA 13C4 PFHpA 13C4 PFOA 13C5 PFNA 13C2 PFDA 13C2 PFDA 13C2 PFUnA	ND ND %Recovery 82 83 82 75 81 78 77	4.5 1.8 ualifier Limits 50 - 150 50 - 150	ng/L	09/15/20 04:37 09/15/20 04:37 Prepared 09/15/20 04:37 09/15/20 04:37 09/15/20 04:37 09/15/20 04:37 09/15/20 04:37 09/15/20 04:37 09/15/20 04:37	09/15/20 19:51 09/15/20 19:51 Analyzed 09/15/20 19:51 09/15/20 19:51 09/15/20 19:51 09/15/20 19:51 09/15/20 19:51 09/15/20 19:51 09/15/20 19:51	1 1 1 1 1 1 1 1 1 1 1 1
6:2 FTS 8:2 FTS Isotope Dilution 13C4 PFBA 13C5 PFPeA 13C2 PFHxA 13C4 PFHpA 13C4 PFOA 13C5 PFNA 13C2 PFDA 13C2 PFDA 13C2 PFUnA 13C2 PFDoA	ND ND %Recovery Q 82 83 82 75 81 78 77 72	4.5 1.8 ualifier <u>Limits</u> 50 - 150 50 - 150	ng/L	09/15/20 04:37 09/15/20 04:37 Prepared 09/15/20 04:37 09/15/20 04:37 09/15/20 04:37 09/15/20 04:37 09/15/20 04:37 09/15/20 04:37 09/15/20 04:37	09/15/20 19:51 09/15/20 19:51 Analyzed 09/15/20 19:51 09/15/20 19:51 09/15/20 19:51 09/15/20 19:51 09/15/20 19:51 09/15/20 19:51 09/15/20 19:51 09/15/20 19:51	1 1 1 1 1 1 1 1 1 1 1 1 1
6:2 FTS 8:2 FTS Isotope Dilution 13C4 PFBA 13C5 PFPeA 13C2 PFHxA 13C4 PFHpA 13C4 PFOA 13C5 PFNA 13C2 PFDA 13C2 PFUnA 13C2 PFUnA 13C2 PFDoA 13C2 PFTeDA	ND ND %Recovery Q 82 83 82 75 81 75 81 78 77 72 62	4.5 1.8 ualifier Limits 50 - 150 50 - 150	ng/L	09/15/20 04:37 09/15/20 04:37 Prepared 09/15/20 04:37 09/15/20 04:37 09/15/20 04:37 09/15/20 04:37 09/15/20 04:37 09/15/20 04:37 09/15/20 04:37 09/15/20 04:37	09/15/20 19:51 09/15/20 19:51 Analyzed 09/15/20 19:51 09/15/20 19:51 09/15/20 19:51 09/15/20 19:51 09/15/20 19:51 09/15/20 19:51 09/15/20 19:51 09/15/20 19:51 09/15/20 19:51	1 1 <i>Dil Fac</i> 1 1 1 1 1 1 1 1 1 1 1 1 1
6:2 FTS 8:2 FTS Isotope Dilution 13C4 PFBA 13C5 PFPeA 13C2 PFHxA 13C4 PFHpA 13C4 PFOA 13C5 PFNA 13C2 PFDA 13C2 PFDA 13C2 PFDOA 13C2 PFDOA 13C2 PFTeDA 13C3 PFBS	ND ND %Recovery Q 82 83 82 75 81 75 81 78 77 72 62 84	4.5 1.8 ualifier Limits 50 - 150 50 - 150	ng/L	09/15/20 04:37 09/15/20 04:37 Prepared 09/15/20 04:37 09/15/20 04:37 09/15/20 04:37 09/15/20 04:37 09/15/20 04:37 09/15/20 04:37 09/15/20 04:37 09/15/20 04:37 09/15/20 04:37	09/15/20 19:51 09/15/20 19:51 Analyzed 09/15/20 19:51 09/15/20 19:51 09/15/20 19:51 09/15/20 19:51 09/15/20 19:51 09/15/20 19:51 09/15/20 19:51 09/15/20 19:51 09/15/20 19:51 09/15/20 19:51	1 1 <i>Dil Fac</i> 1 1 1 1 1 1 1 1 1 1 1 1 1
6:2 FTS 8:2 FTS Isotope Dilution 13C4 PFBA 13C5 PFPeA 13C2 PFHxA 13C4 PFHpA 13C4 PFOA 13C5 PFNA 13C5 PFNA 13C2 PFDA 13C2 PFDA 13C2 PFDoA 13C2 PFTeDA 13C3 PFBS 18O2 PFHxS	ND ND %Recovery Q 82 83 82 75 81 75 81 78 77 72 62 84 88	$\begin{array}{r} 4.5\\ 1.8\\ \\ \hline 1.8\\ \hline 1.8\\ \hline 1.8\\ \hline 1.8\\ \hline 1.8\\ \hline 50 - 150\\ $	ng/L	09/15/20 04:37 09/15/20 04:37 Prepared 09/15/20 04:37 09/15/20 04:37 09/15/20 04:37 09/15/20 04:37 09/15/20 04:37 09/15/20 04:37 09/15/20 04:37 09/15/20 04:37 09/15/20 04:37	09/15/20 19:51 09/15/20 19:51 Analyzed 09/15/20 19:51 09/15/20 19:51	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6:2 FTS 8:2 FTS Isotope Dilution 13C4 PFBA 13C5 PFPeA 13C2 PFHxA 13C4 PFHpA 13C4 PFOA 13C5 PFNA 13C5 PFNA 13C2 PFDA 13C2 PFDA 13C2 PFDA 13C2 PFTeDA 13C2 PFTeDA 13C3 PFBS 18O2 PFHxS 13C4 PFOS	ND ND %Recovery 82 83 82 75 81 75 81 78 77 72 62 84 88 88 81	$\begin{array}{r} 4.5\\ 1.8\\ \\ \hline 1.8\\ \hline 1.8\\ \hline 1.8\\ \hline 1.8\\ \hline 1.8\\ \hline 1.8\\ \hline 50 - 150\\ 50 $	ng/L	09/15/20 04:37 09/15/20 04:37 Prepared 09/15/20 04:37 09/15/20 04:37 09/15/20 04:37 09/15/20 04:37 09/15/20 04:37 09/15/20 04:37 09/15/20 04:37 09/15/20 04:37 09/15/20 04:37 09/15/20 04:37	09/15/20 19:51 09/15/20 19:51 Analyzed 09/15/20 19:51 09/15/20 19:51	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6:2 FTS 8:2 FTS Isotope Dilution 13C4 PFBA 13C5 PFPeA 13C2 PFHxA 13C4 PFHpA 13C4 PFHpA 13C5 PFNA 13C5 PFNA 13C2 PFDA 13C2 PFDA 13C2 PFDA 13C2 PFDA 13C2 PFDA 13C2 PFDA 13C2 PFTeDA 13C3 PFBS 18O2 PFHxS 13C4 PFOS 13C8 FOSA	ND ND %Recovery 82 83 82 75 81 75 81 78 77 72 62 84 88 81 75	$\begin{array}{r} 4.5\\ 1.8\\ \\ \hline 1.8\\ \hline 1.8\\ \hline 1.8\\ \hline 1.8\\ \hline 1.8\\ \hline 1.8\\ \hline 50 - 150\\ 50 $	ng/L	09/15/20 04:37 09/15/20 04:37 Prepared 09/15/20 04:37 09/15/20 04:37	09/15/20 19:51 09/15/20 19:51 Analyzed 09/15/20 19:51 09/15/20 19:51	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6:2 FTS 8:2 FTS Isotope Dilution 13C4 PFBA 13C5 PFPeA 13C2 PFHxA 13C4 PFHpA 13C4 PFHpA 13C5 PFNA 13C5 PFNA 13C2 PFDA 13C2 PFDA 13C2 PFDA 13C2 PFDA 13C2 PFDA 13C2 PFDA 13C2 PFTeDA 13C3 PFBS 18O2 PFHxS 13C4 PFOS 13C8 FOSA d3-NMeFOSAA	ND ND %Recovery 82 83 82 75 81 78 77 72 62 84 88 81 75 72	$\begin{array}{r} 4.5\\ 1.8\\ \\ \hline 1.8\\ \hline 1.8\\ \hline 1.8\\ \hline 1.8\\ \hline 1.8\\ \hline 1.8\\ \hline 50 - 150\\ 50 $	ng/L	09/15/20 04:37 09/15/20 04:37 Prepared 09/15/20 04:37 09/15/20 04:37	09/15/20 19:51 09/15/20 19:51 Analyzed 09/15/20 19:51 09/15/20 19:51	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6:2 FTS 8:2 FTS Isotope Dilution 13C4 PFBA 13C5 PFPeA 13C2 PFHxA 13C4 PFHpA 13C4 PFHpA 13C5 PFNA 13C2 PFDA 13C2 PFDA 13C2 PFDA 13C2 PFDA 13C2 PFDA 13C2 PFDA 13C2 PFDA 13C3 PFBS 18C2 PFHxS 13C4 PFOS 13C4 PFOS 13C4 PFOS 13C8 FOSA d3-NMeFOSAA	ND ND %Recovery Q 82 83 82 75 81 75 81 78 77 72 62 84 88 81 75 72 72 72	$\begin{array}{r c} 4.5 \\ 1.8 \\ \hline 50 - 150 \\ $	ng/L	09/15/20 04:37 09/15/20 04:37 Prepared 09/15/20 04:37 09/15/20 04:37	09/15/20 19:51 09/15/20 19:51 Analyzed 09/15/20 19:51 09/15/20 19:51	1 1 1 1 1 1 1 1 1 1 1 1 1 1
6:2 FTS 8:2 FTS Isotope Dilution 13C4 PFBA 13C5 PFPeA 13C2 PFHxA 13C4 PFHpA 13C4 PFOA 13C4 PFOA 13C2 PFDA 13C2 PFDA 13C2 PFDA 13C2 PFDA 13C2 PFDA 13C2 PFTeDA 13C3 PFBS 18O2 PFHxS 13C4 PFOS 13C8 FOSA d3-NMEFOSAA M2-6:2 FTS	ND ND %Recovery Q 82 83 82 75 81 75 81 78 77 72 62 84 88 81 75 72 62 84 88 81 75 72 83	$\begin{array}{r c} 4.5\\ 1.8\\ \hline 50 - 150\\ 50 $	ng/L	09/15/20 04:37 09/15/20 04:37 Prepared 09/15/20 04:37 09/15/20 04:37	09/15/20 19:51 09/15/20 19:51 Analyzed 09/15/20 19:51 09/15/20 19:51	1 1 Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1 1

Client: Geosyntec Consultants, Inc. Project/Site: PFAS - Hollywood Burbank Airport

Client Sample ID: SB-5A-140 Date Collected: 09/10/20 09:21 Date Received: 09/11/20 10:15

loh	ıח	320-64510-1
300	ID.	320-04310-1

Lab Sample ID: 320-64510-3 Matrix: Solid

Percent Solids: 94.6

5

Analyte		Qualifier	RL	MDL		<u>D</u>	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	ND		0.20		ug/Kg	¢	09/15/20 05:01	09/17/20 16:50	1
Perfluoropentanoic acid (PFPeA)	ND		0.20		ug/Kg	₽	09/15/20 05:01	09/17/20 16:50	1
Perfluorohexanoic acid (PFHxA)	ND		0.20		ug/Kg	\$	09/15/20 05:01	09/17/20 16:50	1
Perfluoroheptanoic acid (PFHpA)	ND		0.20		ug/Kg	¢	09/15/20 05:01	09/17/20 16:50	1
Perfluorooctanoic acid (PFOA)	ND		0.20		ug/Kg	¢	09/15/20 05:01	09/17/20 16:50	1
Perfluorononanoic acid (PFNA)	ND		0.20		ug/Kg	₽	09/15/20 05:01	09/17/20 16:50	1
Perfluorodecanoic acid (PFDA)	ND		0.20		ug/Kg	₽	09/15/20 05:01	09/17/20 16:50	1
Perfluoroundecanoic acid (PFUnA)	ND		0.20		ug/Kg	₽	09/15/20 05:01	09/17/20 16:50	1
Perfluorododecanoic acid (PFDoA)	ND		0.20		ug/Kg	¢	09/15/20 05:01	09/17/20 16:50	1
Perfluorotridecanoic acid (PFTriA)	ND		0.20		ug/Kg	₽	09/15/20 05:01	09/17/20 16:50	1
Perfluorotetradecanoic acid (PFTeA)	ND		0.20		ug/Kg	¢	09/15/20 05:01	09/17/20 16:50	1
Perfluorobutanesulfonic acid (PFBS)	ND		0.20		ug/Kg	¢	09/15/20 05:01	09/17/20 16:50	1
Perfluoropentanesulfonic acid (PFPeS)	ND		0.20		ug/Kg	¢	09/15/20 05:01	09/17/20 16:50	1
Perfluorohexanesulfonic acid (PFHxS)	ND		0.20		ug/Kg	₽	09/15/20 05:01	09/17/20 16:50	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		0.20		ug/Kg	¢	09/15/20 05:01	09/17/20 16:50	1
Perfluorooctanesulfonic acid (PFOS)	ND		0.49		ug/Kg	₽	09/15/20 05:01	09/17/20 16:50	1
Perfluorodecanesulfonic acid (PFDS)	ND		0.20		ug/Kg	¢	09/15/20 05:01	09/17/20 16:50	1
Perfluorooctanesulfonamide (FOSA)	ND		0.20		ug/Kg	¢	09/15/20 05:01	09/17/20 16:50	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		2.0		ug/Kg	¢	09/15/20 05:01	09/17/20 16:50	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		2.0		ug/Kg	¢	09/15/20 05:01	09/17/20 16:50	1
4:2 FTS	ND		2.0		ug/Kg	₽	09/15/20 05:01	09/17/20 16:50	1
6:2 FTS	ND		2.0		ug/Kg		09/15/20 05:01	09/17/20 16:50	1
8:2 FTS	ND		2.0		ug/Kg	¢	09/15/20 05:01	09/17/20 16:50	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	83		50 - 150				09/15/20 05:01	09/17/20 16:50	1
13C5 PFPeA	85		50 - 150				09/15/20 05:01	09/17/20 16:50	1
13C2 PFHxA	83		50 - 150				09/15/20 05:01	09/17/20 16:50	1
13C4 PFHpA	88		50 - 150				09/15/20 05:01	09/17/20 16:50	1
13C4 PFOA	87		50 - 150				09/15/20 05:01	09/17/20 16:50	1
13C5 PFNA	87		50 - 150				09/15/20 05:01	09/17/20 16:50	1
13C2 PFDA	87		50 - 150				09/15/20 05:01	09/17/20 16:50	1
13C2 PFUnA	91		50 - 150				09/15/20 05:01	09/17/20 16:50	1
13C2 PFDoA	86		50 - 150				09/15/20 05:01	09/17/20 16:50	1
13C2 PFTeDA	78		50 ₋ 150					09/17/20 16:50	
13C3 PFBS	76		50 - 150					09/17/20 16:50	1
18O2 PFHxS	78		50 - 150					09/17/20 16:50	1
13C4 PFOS	80		50 - 150					09/17/20 16:50	
13C8 FOSA	81		50 - 150					09/17/20 16:50	1
d3-NMeFOSAA	82		50 - 150					09/17/20 16:50	1
d5-NEtFOSAA	84		50 - 150 50 - 150					09/17/20 16:50	
M2-6:2 FTS	94		50 - 150 50 - 150					09/17/20 16:50	1
M2-8:2 FTS M2-8:2 FTS	94 85		50 - 150 50 - 150					09/17/20 16:50	1
WIZ-0.21 10	00		50 - 150				03/10/20 00.01	03/11/20 10.00	/

Client: Geosyntec Consultants, Inc. Project/Site: PFAS - Hollywood Burbank Airport

Client Sample ID: SB-5A-140 Date Collected: 09/10/20 09:21

Date Received: 09/11/20 10:	15		
General Chemistry			

Analyte	Result Qualifier	RL	RL Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	5.4	0.1	%			09/14/20 14:16	1
Percent Solids	94.6	0.1	%			09/14/20 14:16	1

Client Sample ID: SB-5A-150 Date Collected: 09/10/20 10:18 Da

13C2 PFDoA

13C2 PFTeDA

13C3 PFBS

18O2 PFHxS

13C4 PFOS

13C8 FOSA

Lab Sample ID: 320-64510-4 Matrix: Solid

Date Collected: 09/10/20 10:18 Date Received: 09/11/20 10:15								Percent Solid	: Solid s: 96.6
Method: EPA 537(Mod) - PFAS Analyte		.1, Table B Qualifier	-15 RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	ND		0.20		ug/Kg	— <u></u>	09/15/20 05:01	09/17/20 16:22	1
Perfluoropentanoic acid (PFPeA)	ND		0.20		ug/Kg	¢	09/15/20 05:01	09/17/20 16:22	1
Perfluorohexanoic acid (PFHxA)	ND		0.20		ug/Kg	¢	09/15/20 05:01	09/17/20 16:22	1
Perfluoroheptanoic acid (PFHpA)	ND		0.20		ug/Kg		09/15/20 05:01	09/17/20 16:22	1
Perfluorooctanoic acid (PFOA)	ND		0.20		ug/Kg	¢	09/15/20 05:01	09/17/20 16:22	1
Perfluorononanoic acid (PFNA)	ND		0.20		ug/Kg	¢	09/15/20 05:01	09/17/20 16:22	1
Perfluorodecanoic acid (PFDA)	ND		0.20		ug/Kg		09/15/20 05:01	09/17/20 16:22	1
Perfluoroundecanoic acid (PFUnA)	ND		0.20		ug/Kg	¢	09/15/20 05:01	09/17/20 16:22	1
Perfluorododecanoic acid (PFDoA)	ND		0.20		ug/Kg	¢	09/15/20 05:01	09/17/20 16:22	1
Perfluorotridecanoic acid (PFTriA)	ND		0.20		ug/Kg		09/15/20 05:01	09/17/20 16:22	1
Perfluorotetradecanoic acid (PFTeA)	ND		0.20		ug/Kg	¢	09/15/20 05:01	09/17/20 16:22	1
Perfluorobutanesulfonic acid (PFBS)	ND		0.20		ug/Kg	¢		09/17/20 16:22	1
Perfluoropentanesulfonic acid (PFPeS)	ND		0.20		ug/Kg	₽	09/15/20 05:01	09/17/20 16:22	1
Perfluorohexanesulfonic acid (PFHxS)	ND		0.20		ug/Kg	¢	09/15/20 05:01	09/17/20 16:22	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		0.20		ug/Kg	¢	09/15/20 05:01	09/17/20 16:22	1
Perfluorooctanesulfonic acid (PFOS)	ND		0.51		ug/Kg	¢	09/15/20 05:01	09/17/20 16:22	1
Perfluorodecanesulfonic acid (PFDS)	ND		0.20		ug/Kg	₽	09/15/20 05:01	09/17/20 16:22	1
Perfluorooctanesulfonamide (FOSA)	ND		0.20		ug/Kg	¢	09/15/20 05:01	09/17/20 16:22	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		2.0		ug/Kg	¢	09/15/20 05:01	09/17/20 16:22	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		2.0		ug/Kg	☆	09/15/20 05:01	09/17/20 16:22	1
4:2 FTS	ND		2.0		ug/Kg	¢	09/15/20 05:01	09/17/20 16:22	1
6:2 FTS	ND		2.0		ug/Kg	¢	09/15/20 05:01	09/17/20 16:22	1
8:2 FTS	ND		2.0		ug/Kg	¢	09/15/20 05:01	09/17/20 16:22	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	64		50 - 150				09/15/20 05:01	09/17/20 16:22	1
13C5 PFPeA	65		50 - 150				09/15/20 05:01	09/17/20 16:22	1
13C2 PFHxA	63		50 - 150				09/15/20 05:01	09/17/20 16:22	1
13C4 PFHpA	71		50 - 150				09/15/20 05:01	09/17/20 16:22	1
13C4 PFOA	67		50 - 150				09/15/20 05:01	09/17/20 16:22	1
13C5 PFNA	69		50 - 150				09/15/20 05:01	09/17/20 16:22	1
13C2 PFDA	69		50 - 150				09/15/20 05:01	09/17/20 16:22	1
13C2 PFUnA	65		50 - 150				09/15/20 05:01	09/17/20 16:22	1

Lab Sample ID: 320-64510-3

Job ID: 320-64510-1

Percent Solids: 94.6

Matrix: Solid

6

Eurofins TestAmerica, Sacramento

09/15/20 05:01 09/17/20 16:22

09/15/20 05:01 09/17/20 16:22

09/15/20 05:01 09/17/20 16:22

09/15/20 05:01 09/17/20 16:22

09/15/20 05:01 09/17/20 16:22

09/15/20 05:01 09/17/20 16:22

50 - 150

50 - 150

50 - 150

50 - 150

50 - 150

50 - 150

65

62

61

64

63

64

1

1

1

1

1

Limits

50 - 150

50 - 150

50 - 150

50 - 150

50 - 150

RL

0.1

0.1

RL Unit

%

%

Client Sample ID: SB-5A-150 Date Collected: 09/10/20 10:18 Date Received: 09/11/20 10:15

Client Sample ID: SB-5A-160

Date Collected: 09/10/20 10:20 Date Received: 09/11/20 10:15

Isotope Dilution

d3-NMeFOSAA

d5-NEtFOSAA

M2-6:2 FTS

M2-8:2 FTS

M2-4:2 FTS

Analyte

General Chemistry

Percent Moisture

Percent Solids

Job	ID:	320-	6451	0-1

Percent Solids: 96.6

Analyzed

Analyzed

09/14/20 14:16

09/14/20 14:16

Matrix: Solid

Dil Fac

1

1

1

1

1

1

1

Dil Fac

Lab Sample ID: 320-64510-4

09/15/20 05:01 09/17/20 16:22

09/15/20 05:01 09/17/20 16:22

09/15/20 05:01 09/17/20 16:22

09/15/20 05:01 09/17/20 16:22

09/15/20 05:01 09/17/20 16:22

Prepared

Prepared

Lab Sample

D

e ID: 320-64510-5	
Matrix: Solid	
Percent Solids: 97.2	

Method: EPA 537(Mod) - PFAS for QSM 5.1, Table B-15

Method: EPA 537(Mod) - PFAS for QSM 5.1, Table B-15 (Continued)

%Recovery Qualifier

61

62

74

66

70

3.4

96.6

Result Qualifier

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	ND		0.19		ug/Kg	₽	09/15/20 05:01	09/17/20 16:59	1
Perfluoropentanoic acid (PFPeA)	ND		0.19		ug/Kg	₽	09/15/20 05:01	09/17/20 16:59	1
Perfluorohexanoic acid (PFHxA)	ND		0.19		ug/Kg	₽	09/15/20 05:01	09/17/20 16:59	1
Perfluoroheptanoic acid (PFHpA)	ND		0.19		ug/Kg	₽	09/15/20 05:01	09/17/20 16:59	1
Perfluorooctanoic acid (PFOA)	ND		0.19		ug/Kg	₽	09/15/20 05:01	09/17/20 16:59	1
Perfluorononanoic acid (PFNA)	ND		0.19		ug/Kg	₽	09/15/20 05:01	09/17/20 16:59	1
Perfluorodecanoic acid (PFDA)	ND		0.19		ug/Kg	¢	09/15/20 05:01	09/17/20 16:59	1
Perfluoroundecanoic acid (PFUnA)	ND		0.19		ug/Kg	₽	09/15/20 05:01	09/17/20 16:59	1
Perfluorododecanoic acid (PFDoA)	ND		0.19		ug/Kg	₽	09/15/20 05:01	09/17/20 16:59	1
Perfluorotridecanoic acid (PFTriA)	ND		0.19		ug/Kg	₽	09/15/20 05:01	09/17/20 16:59	1
Perfluorotetradecanoic acid (PFTeA)	ND		0.19		ug/Kg	₽	09/15/20 05:01	09/17/20 16:59	1
Perfluorobutanesulfonic acid (PFBS)	ND		0.19		ug/Kg	₽	09/15/20 05:01	09/17/20 16:59	1
Perfluoropentanesulfonic acid (PFPeS)	ND		0.19		ug/Kg	¢	09/15/20 05:01	09/17/20 16:59	1
Perfluorohexanesulfonic acid (PFHxS)	ND		0.19		ug/Kg	₽	09/15/20 05:01	09/17/20 16:59	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		0.19		ug/Kg	¢	09/15/20 05:01	09/17/20 16:59	1
Perfluorooctanesulfonic acid (PFOS)	ND		0.48		ug/Kg	₽	09/15/20 05:01	09/17/20 16:59	1
Perfluorodecanesulfonic acid (PFDS)	ND		0.19		ug/Kg	₽	09/15/20 05:01	09/17/20 16:59	1
Perfluorooctanesulfonamide (FOSA)	ND		0.19		ug/Kg	₽	09/15/20 05:01	09/17/20 16:59	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		1.9		ug/Kg	¢	09/15/20 05:01	09/17/20 16:59	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		1.9		ug/Kg	¢	09/15/20 05:01	09/17/20 16:59	1
4:2 FTS	ND		1.9		ug/Kg	₽	09/15/20 05:01	09/17/20 16:59	1
6:2 FTS	ND		1.9		ug/Kg	₽	09/15/20 05:01	09/17/20 16:59	1
8:2 FTS	ND		1.9		ug/Kg	₽	09/15/20 05:01	09/17/20 16:59	1
sotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	85		50 - 150				09/15/20 05:01		1
13C5 PFPeA	87		50 - 150					09/17/20 16:59	1
13C2 PFHxA	82		50 - 150					09/17/20 16:59	1
13C4 PFHpA	91		50 - 150					09/17/20 16:59	1
13C4 PFOA	83		50 - 150					09/17/20 16:59	1
13C5 PFNA	94		50 - 150				09/15/20 05:01	09/17/20 16:59	1

Eurofins TestAmerica, Sacramento

Client: Geosyntec Consultants, Inc. Project/Site: PFAS - Hollywood Burbank Airport

Client Sample ID: SB-5A-160 Date Collected: 09/10/20 10:20 Date Received: 09/11/20 10:15

Job ID: 320-64510-1

Lab Sample ID: 320-64510-5 Matrix: Solid Percent Solids: 97.2

Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFDA	89		50 - 150				09/15/20 05:01	09/17/20 16:59	1
13C2 PFUnA	85		50 - 150				09/15/20 05:01	09/17/20 16:59	1
13C2 PFDoA	86		50 - 150				09/15/20 05:01	09/17/20 16:59	1
13C2 PFTeDA	85		50 - 150				09/15/20 05:01	09/17/20 16:59	1
13C3 PFBS	75		50 - 150				09/15/20 05:01	09/17/20 16:59	1
18O2 PFHxS	78		50 - 150				09/15/20 05:01	09/17/20 16:59	1
13C4 PFOS	80		50 - 150				09/15/20 05:01	09/17/20 16:59	1
13C8 FOSA	84		50 - 150				09/15/20 05:01	09/17/20 16:59	1
d3-NMeFOSAA	78		50 - 150				09/15/20 05:01	09/17/20 16:59	1
d5-NEtFOSAA	82		50 - 150				09/15/20 05:01	09/17/20 16:59	1
M2-6:2 FTS	88		50 - 150				09/15/20 05:01	09/17/20 16:59	1
M2-8:2 FTS	86		50 - 150				09/15/20 05:01	09/17/20 16:59	1
M2-4:2 FTS	80		50 - 150				09/15/20 05:01	09/17/20 16:59	1
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	2.8		0.1		%			09/14/20 14:16	1
Percent Solids	97.2		0.1		%			09/14/20 14:16	1

Eurofins TestAmerica, Sacramento

Client: Geosyntec Consultants, Inc. Project/Site: PFAS - Hollywood Burbank Airport

Matrix: Solid

PFDoA = 13C2 PFDoA PFTDA = 13C2 PFTeDA C3PFBS = 13C3 PFBS PFHxS = 18O2 PFHxS PFOS = 13C4 PFOS PFOSA = 13C8 FOSA d3NMFOS = d3-NMeFOSAA d5NEFOS = d5-NEtFOSAA M262FTS = M2-6:2 FTS M282FTS = M2-8:2 FTS M242FTS = M2-4:2 FTS

Method: EPA 537(Mod) - PFAS for QSM 5.1, Table B-15

Prep Type: Total/NA

5

				-	Dilution Re	• •	-		
		PFBA	PFPeA	PFHxA	C4PFHA	PFOA	PFNA	PFDA	PFUnA
Lab Sample ID	Client Sample ID	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)
320-64510-3	SB-5A-140	83	85	83	88	87	87	87	91
320-64510-4	SB-5A-150	64	65	63	71	67	69	69	65
320-64510-4 MS	SB-5A-150	60	62	59	66	61	68	62	62
320-64510-4 MSD	SB-5A-150	74	76	74	79	73	77	75	77
320-64510-5	SB-5A-160	85	87	82	91	83	94	89	85
LCS 320-412162/2-A	Lab Control Sample	66	68	63	73	70	71	72	68
MB 320-412162/1-A	Method Blank	64	65	62	65	63	67	66	66
			Perce	ent Isotone	Dilution Re	covery (Ac	centance I	imits)	
		PFDoA	PFTDA	C3PFBS	PFHxS	PFOS	PFOSA	d3NMFOS	d5NEEOS
Lab Sample ID	Client Sample ID	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)
320-64510-3	SB-5A-140	86	78	76	78	80	81	82	84
320-64510-4	SB-5A-150	65	62	61	64	63	64	61	62
320-64510-4 MS	SB-5A-150	61	61	57	61	59	60	58	62
320-64510-4 MSD	SB-5A-150	78	76	70	73	71	73	68	74
320-64510-5	SB-5A-160	86	85	75	78	80	84	78	82
LCS 320-412162/2-A	Lab Control Sample	67	70	69	73	73	67	62	68
MB 320-412162/1-A	Method Blank	66	64	66	67	66	62	62	67
				ant leatona	Dilution Re				
		M262FTS		M242FTS	Dilution ite	COvery (AC	ceptance L		
Lab Sample ID	Client Sample ID	(50-150)	(50-150)	(50-150)					
320-64510-3	SB-5A-140	94	85	92					
320-64510-4	SB-5A-150	74	66	70					
320-64510-4 MS	SB-5A-150 SB-5A-150	68	60	67					
320-64510-4 MSD	SB-5A-150 SB-5A-150	80	77	79					
320-64510-5	SB-5A-160	88	86	80					
LCS 320-412162/2-A	Lab Control Sample	92	76	83					
MB 320-412162/1-A	Method Blank	93	70	86					
Ourse note Lemend									
Surrogate Legend PFBA = 13C4 PFBA									
PFPeA = 13C5 PFPeA									
PFHxA = 13C2 PFHxA									
C4PFHA = 13C4 PFHpA									
PFOA = 13C4 PFOA									
PFNA = 13C5 PFNA									
PFDA = 13C2 PFDA									
PFUnA = 13C2 PFUnA									

Isotope Dilution Summary

Client: Geosyntec Consultants, Inc. Project/Site: PFAS - Hollywood Burbank Airport

Method: EPA 537(Mod) - PFAS for QSM 5.1, Table B-15

Matrix: Water

M282FTS = M2-8:2 FTS M242FTS = M2-4:2 FTS

				ent Isotope					
		PFBA	PFPeA	PFHxA	C4PFHA	PFOA	PFNA	PFDA	PFUnA
Lab Sample ID	Client Sample ID	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)
320-64510-1	EB-200910	88	88	86	88	85	91	83	96
320-64510-2	FB-200910	79	82	83	82	75	81	78	77
LCS 320-412160/2-A	Lab Control Sample	86	87	94	90	79	84	86	82
LCSD 320-412160/3-A	Lab Control Sample Dup	81	87	88	87	81	79	81	85
MB 320-412160/1-A	Method Blank	79	79	82	79	78	79	78	80
			Perce	ent Isotope	Dilution Re	covery (Ac	ceptance L	imits)	
		PFDoA	PFTDA	C3PFBS	PFHxS	PFOS	PFOSA	d3NMFOS	d5NEFOS
Lab Sample ID	Client Sample ID	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)
320-64510-1	EB-200910	78	73	96	95	92	84	85	94
320-64510-2	FB-200910	72	62	84	88	81	75	72	72
LCS 320-412160/2-A	Lab Control Sample	77	74	91	97	90	82	77	79
LCSD 320-412160/3-A	Lab Control Sample Dup	73	66	88	90	86	78	76	76
MB 320-412160/1-A	Method Blank	68	68	88	83	79	76	75	75
			Perce	ent Isotope	Dilution Re	ecoverv (Ac	ceptance L	imits)	
		M262FTS		M242FTS		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,	
Lab Sample ID	Client Sample ID	(50-150)	(50-150)	(50-150)					
320-64510-1	EB-200910	126	116	116					
320-64510-2	FB-200910	83	90	83					
LCS 320-412160/2-A	Lab Control Sample	86	87	96					
LCSD 320-412160/3-A	Lab Control Sample Dup	86	87	83					
MB 320-412160/1-A	Method Blank	82	84	88					
Surrogate Legend									
PFBA = 13C4 PFBA									
PFPeA = 13C5 PFPeA									
PFHxA = 13C2 PFHxA									
C4PFHA = 13C4 PFHpA									
PFOA = 13C4 PFOA									
PFNA = 13C5 PFNA									
PFDA = 13C2 PFDA									
PFUnA = 13C2 PFUnA									
PFDoA = 13C2 PFDoA									
PFTDA = 13C2 PFTeDA									
C3PFBS = 13C3 PFBS									
PFHxS = 18O2 PFHxS									
PFOS = 13C4 PFOS									
PFOSA = 13C8 FOSA									
d3NMFOS = d3-NMeFOS									
d5NEFOS = d5-NEtFOSA	A								
M262FTS = M2-6:2 FTS									

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 412160

5

8

Client Sample ID: Method Blank

Method: EPA 537(Mod) - PFAS for QSM 5.1, Table B-15

Lab Sample ID: MB 320-412160/1-A Matrix: Water Analysis Batch: 412401

	МВ	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	ND		5.0		ng/L		09/15/20 04:37	09/15/20 19:14	1
Perfluoropentanoic acid (PFPeA)	ND		2.0		ng/L		09/15/20 04:37	09/15/20 19:14	1
Perfluorohexanoic acid (PFHxA)	ND		2.0		ng/L		09/15/20 04:37	09/15/20 19:14	1
Perfluoroheptanoic acid (PFHpA)	ND		2.0		ng/L		09/15/20 04:37	09/15/20 19:14	1
Perfluorooctanoic acid (PFOA)	ND		2.0		ng/L		09/15/20 04:37	09/15/20 19:14	1
Perfluorononanoic acid (PFNA)	ND		2.0		ng/L		09/15/20 04:37	09/15/20 19:14	1
Perfluorodecanoic acid (PFDA)	ND		2.0		ng/L		09/15/20 04:37	09/15/20 19:14	1
Perfluoroundecanoic acid (PFUnA)	ND		2.0		ng/L		09/15/20 04:37	09/15/20 19:14	1
Perfluorododecanoic acid (PFDoA)	ND		2.0		ng/L		09/15/20 04:37	09/15/20 19:14	1
Perfluorotridecanoic acid (PFTriA)	ND		2.0		ng/L		09/15/20 04:37	09/15/20 19:14	1
Perfluorotetradecanoic acid (PFTeA)	ND		2.0		ng/L		09/15/20 04:37	09/15/20 19:14	1
Perfluorobutanesulfonic acid (PFBS)	ND		2.0		ng/L		09/15/20 04:37	09/15/20 19:14	1
Perfluoropentanesulfonic acid (PFPeS)	ND		2.0		ng/L		09/15/20 04:37	09/15/20 19:14	1
Perfluorohexanesulfonic acid (PFHxS)	ND		2.0		ng/L		09/15/20 04:37	09/15/20 19:14	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		2.0		ng/L		09/15/20 04:37	09/15/20 19:14	1
Perfluorooctanesulfonic acid (PFOS)	ND		2.0		ng/L		09/15/20 04:37	09/15/20 19:14	1
Perfluorodecanesulfonic acid (PFDS)	ND		2.0		ng/L		09/15/20 04:37	09/15/20 19:14	1
Perfluorooctanesulfonamide (FOSA)	ND		2.0		ng/L		09/15/20 04:37	09/15/20 19:14	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		5.0		ng/L		09/15/20 04:37	09/15/20 19:14	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		5.0		ng/L		09/15/20 04:37	09/15/20 19:14	1
4:2 FTS	ND		2.0		ng/L		09/15/20 04:37	09/15/20 19:14	1
6:2 FTS	ND		5.0		ng/L		09/15/20 04:37	09/15/20 19:14	1
8:2 FTS	ND		2.0		ng/L		09/15/20 04:37	09/15/20 19:14	1
	MB	MB							
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	79		50 - 150				09/15/20 04:37	09/15/20 19:14	1
13C5 PFPeA	79		50 - 150				09/15/20 04:37	09/15/20 19:14	1
13C2 PFHxA	82		50 - 150				09/15/20 04:37	09/15/20 19:14	1
13C4 PFHpA	79		50 - 150				09/15/20 04:37	09/15/20 19:14	1
13C4 PFOA	78		50 - 150				09/15/20 04:37	09/15/20 19:14	1
13C5 PFNA	79		50 - 150				09/15/20 04:37	09/15/20 19:14	1
13C2 PFDA	78		50 - 150					09/15/20 19:14	1
13C2 PFUnA	80		50 - 150				09/15/20 04:37	09/15/20 19:14	1
13C2 PFDoA	68		50 - 150				09/15/20 04:37	09/15/20 19:14	1
13C2 PFTeDA	68		50 - 150				09/15/20 04:37	09/15/20 19:14	1
13C3 PFBS	88		50 - 150					09/15/20 19:14	1
18O2 PFHxS	83		50 - 150					09/15/20 19:14	1
13C4 PFOS	79		50 - 150				09/15/20 04:37	09/15/20 19:14	1
13C8 FOSA	76		50 - 150				09/15/20 04:37	09/15/20 19:14	1
d3-NMeFOSAA	75		50 - 150				09/15/20 04:37	09/15/20 19:14	1
d5-NEtFOSAA	75		50 - 150				09/15/20 04:37	09/15/20 19:14	1
M2-6:2 FTS	82		50 - 150				09/15/20 04:37	09/15/20 19:14	1
M2-8:2 FTS	84		50 - 150					09/15/20 19:14	1
M2-4:2 FTS	88		50 - 150				09/15/20 04:37	09/15/20 19:14	1

5

8

Client Sample ID: Lab Control Sample

Method: EPA 537(Mod) - PFAS for QSM 5.1, Table B-15 (Continued)

Lab Sample ID: LCS 320-412160/2-A
Matrix: Water

Matrix: Water Analysis Batch: 412401			Spike	1.00	LCS			÷	Prep Type: Total/NA Prep Batch: 412160
Analyte			Spike Added	-	Qualifier	Unit	D	%Rec	%Rec. Limits
Perfluorobutanoic acid (PFBA)			40.0	44.1		ng/L		110	76 - 136
Perfluoropentanoic acid (PFPeA)			40.0	40.1		ng/L		100	71 - 131
Perfluorohexanoic acid (PFHxA)			40.0	39.4		ng/L		99	73 - 133
Perfluoroheptanoic acid (PFHpA)			40.0	40.1		ng/L		100	72 - 132
Perfluorooctanoic acid (PFOA)			40.0	43.5		ng/L		109	70 - 130
Perfluorononanoic acid (PFNA)			40.0	41.6		ng/L		104	75 - 135
Perfluorodecanoic acid (PFDA)			40.0	40.9		ng/L		102	76 - 136
Perfluoroundecanoic acid			40.0	40.1		ng/L		100	68 - 128
(PFUnA)						0			
Perfluorododecanoic acid			40.0	40.8		ng/L		102	71 - 131
(PFDoA)									
Perfluorotridecanoic acid			40.0	39.8		ng/L		99	71 - 131
(PFTriA) Perfluorotetradecanoic acid			40.0	40.2		ng/l		101	70 - 130
(PFTeA)			40.0	40.2		ng/L		101	70 - 130
Perfluorobutanesulfonic acid			35.4	35.7		ng/L		101	67 - 127
(PFBS)						5			
Perfluoropentanesulfonic acid			37.5	42.1		ng/L		112	66 - 126
(PFPeS)									
Perfluorohexanesulfonic acid			36.4	34.2		ng/L		94	59 - 119
(PFHxS)			20.4	20.7		~~/l		104	76 106
Perfluoroheptanesulfonic Acid (PFHpS)			38.1	39.7		ng/L		104	76 - 136
Perfluorooctanesulfonic acid			37.1	40.2		ng/L		108	70 - 130
(PFOS)			01.1	10.2		119/1		100	
Perfluorodecanesulfonic acid			38.6	38.1		ng/L		99	71 - 131
(PFDS)									
Perfluorooctanesulfonamide			40.0	44.6		ng/L		112	73 - 133
(FOSA)			40.0	40.4				400	70, 400
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)			40.0	43.1		ng/L		108	76 - 136
N-ethylperfluorooctanesulfonami			40.0	39.5		ng/L		99	76 - 136
doacetic acid (NEtFOSAA)			40.0	00.0		ng/L		00	10-100
4:2 FTS			37.4	33.7		ng/L		90	79 - 139
6:2 FTS			37.9	38.0		ng/L		100	59 ₋ 175
8:2 FTS			38.3	37.6		ng/L		98	75 ₋ 135
	LCS	LCS				•			
Isotope Dilution	%Recovery		Limits						
13C4 PFBA	86		50 - 150						
13C5 PFPeA	87		50 - 150						
13C2 PFHxA	94		50 - 150						
13C4 PFHpA	90		50 - 150						
13C4 PFOA	79		50 - 150						
13C5 PFNA	84		50 - 150						
13C2 PFDA	86		50 - 150						
13C2 PFUnA	82		50 - 150						
13C2 PFDoA	77		50 - 150						
13C2 PFTeDA	74		50 - 150						
13C3 PFBS	91		50 - 150						
1802 PFHxS	97		50 - 150						
13C4 PFOS	90		50 - 150						
13C8 FOSA	82		50 - 150						
	02		00-700						

Eurofins TestAmerica, Sacramento

midoacetic acid (NMeFOSAA)

doacetic acid (NEtFOSAA)

4:2 FTS

6:2 FTS

8:2 FTS

Isotope Dilution

13C4 PFBA

13C5 PFPeA

13C2 PFHxA

N-ethylperfluorooctanesulfonami

QC Sample Results

Method: EPA 537(Mod) - PFAS for QSM 5.1, Table B-15 (Continued) Lab Sample ID: LCS 320-412160/2-A **Client Sample ID: Lab Control Sample** Matrix: Water Prep Type: Total/NA Analysis Batch: 412401 **Prep Batch: 412160** LCS LCS Isotope Dilution %Recovery Qualifier Limits d3-NMeFOSAA 77 50 - 150 d5-NEtFOSAA 79 50 - 150 M2-6:2 FTS 86 50 - 150 M2-8:2 FTS 87 50 - 150 M2-4:2 FTS 96 50 - 150 Lab Sample ID: LCSD 320-412160/3-A **Client Sample ID: Lab Control Sample Dup** Matrix: Water Prep Type: Total/NA Analysis Batch: 412401 **Prep Batch: 412160** LCSD LCSD Spike %Rec. RPD Limit Analvte Added **Result Qualifier** Unit D %Rec Limits RPD 40.0 30 Perfluorobutanoic acid (PFBA) 46.1 ng/L 115 76 - 136 5 Perfluoropentanoic acid (PFPeA) 40.0 37.1 ng/L 93 71 - 131 8 30 Perfluorohexanoic acid (PFHxA) 40.0 40.5 ng/L 101 73 - 133 30 3 Perfluoroheptanoic acid (PFHpA) 40.0 39.8 100 72 - 132 30 ng/L 1 70 - 130 Perfluorooctanoic acid (PFOA) 40.0 40.9 102 30 ng/L 6 Perfluorononanoic acid (PFNA) 40.0 42.7 ng/L 107 75 - 135 3 30 ng/L Perfluorodecanoic acid (PFDA) 40.0 42.9 107 76 - 136 5 30 Perfluoroundecanoic acid 40.0 40.2 ng/L 100 68 - 128 0 30 (PFUnA) 40.0 46.2 115 71 - 131 Perfluorododecanoic acid ng/L 12 30 (PFDoA) 40.0 43.0 ng/L 107 71 - 131 8 Perfluorotridecanoic acid 30 (PFTriA) Perfluorotetradecanoic acid 40.0 41.8 104 70 - 130 4 30 ng/L (PFTeA) Perfluorobutanesulfonic acid 35.4 36.7 ng/L 104 67 - 127 3 30 (PFBS) Perfluoropentanesulfonic acid 37.5 42.7 ng/L 114 66 - 126 1 30 (PFPeS) 36.4 36.5 7 Perfluorohexanesulfonic acid ng/L 100 59 - 119 30 (PFHxS) 38.1 41.1 108 76 - 136 3 30 Perfluoroheptanesulfonic Acid ng/L (PFHpS) Perfluorooctanesulfonic acid 37.1 40.5 ng/L 109 70 - 130 1 30 (PFOS) 38.6 38.0 ng/L 98 71 - 131 0 30 Perfluorodecanesulfonic acid (PFDS) 40.0 Perfluorooctanesulfonamide 43.7 ng/L 109 73 - 133 2 30 (FOSA) 103 76 - 136 30 40.0 41.3 4 N-methylperfluorooctanesulfona ng/L

30

30

30

30

4

13

0

4

103

102

101

102

76 - 136

79 - 139

59 - 175

75 - 135

Eurofins TestAmerica, Sacramento

40.0

37.4

37.9

38.3

Limits 50 - 150

50 - 150

50 - 150

LCSD LCSD

81

87

88

Qualifier

%Recovery

41.3

38.3

38.1

39.1

ng/L

ng/L

ng/L

ng/L

Method: EPA 537(Mod) - PFAS for QSM 5.1, Table B-15 (Continued)

Lab Sample ID: LCSD 320-412160/3-A Matrix: Water

Analysis Batch: 412401

	LCSD	LCSD	
Isotope Dilution	%Recovery	Qualifier	Limits
13C4 PFHpA	87		50 - 150
13C4 PFOA	81		50 - 150
13C5 PFNA	79		50 - 150
13C2 PFDA	81		50 - 150
13C2 PFUnA	85		50 - 150
13C2 PFDoA	73		50 - 150
13C2 PFTeDA	66		50 - 150
13C3 PFBS	88		50 - 150
18O2 PFHxS	90		50 - 150
13C4 PFOS	86		50 - 150
13C8 FOSA	78		50 - 150
d3-NMeFOSAA	76		50 - 150
d5-NEtFOSAA	76		50 - 150
M2-6:2 FTS	86		50 - 150
M2-8:2 FTS	87		50 - 150
M2-4:2 FTS	83		50 - 150

Lab Sample ID: MB 320-412162/1-A Matrix: Solid Analysis Batch: 413201

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	ND		0.20		ug/Kg		09/15/20 05:01	09/17/20 16:03	1
Perfluoropentanoic acid (PFPeA)	ND		0.20		ug/Kg		09/15/20 05:01	09/17/20 16:03	1
Perfluorohexanoic acid (PFHxA)	ND		0.20		ug/Kg		09/15/20 05:01	09/17/20 16:03	1
Perfluoroheptanoic acid (PFHpA)	ND		0.20		ug/Kg		09/15/20 05:01	09/17/20 16:03	1
Perfluorooctanoic acid (PFOA)	ND		0.20		ug/Kg		09/15/20 05:01	09/17/20 16:03	1
Perfluorononanoic acid (PFNA)	ND		0.20		ug/Kg		09/15/20 05:01	09/17/20 16:03	1
Perfluorodecanoic acid (PFDA)	ND		0.20		ug/Kg		09/15/20 05:01	09/17/20 16:03	1
Perfluoroundecanoic acid (PFUnA)	ND		0.20		ug/Kg		09/15/20 05:01	09/17/20 16:03	1
Perfluorododecanoic acid (PFDoA)	ND		0.20		ug/Kg		09/15/20 05:01	09/17/20 16:03	1
Perfluorotridecanoic acid (PFTriA)	ND		0.20		ug/Kg		09/15/20 05:01	09/17/20 16:03	1
Perfluorotetradecanoic acid (PFTeA)	ND		0.20		ug/Kg		09/15/20 05:01	09/17/20 16:03	1
Perfluorobutanesulfonic acid (PFBS)	ND		0.20		ug/Kg		09/15/20 05:01	09/17/20 16:03	1
Perfluoropentanesulfonic acid (PFPeS)	ND		0.20		ug/Kg		09/15/20 05:01	09/17/20 16:03	1
Perfluorohexanesulfonic acid (PFHxS)	ND		0.20		ug/Kg		09/15/20 05:01	09/17/20 16:03	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		0.20		ug/Kg		09/15/20 05:01	09/17/20 16:03	1
Perfluorooctanesulfonic acid (PFOS)	ND		0.50		ug/Kg		09/15/20 05:01	09/17/20 16:03	1
Perfluorodecanesulfonic acid (PFDS)	ND		0.20		ug/Kg		09/15/20 05:01	09/17/20 16:03	1
Perfluorooctanesulfonamide (FOSA)	ND		0.20		ug/Kg		09/15/20 05:01	09/17/20 16:03	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		2.0		ug/Kg		09/15/20 05:01	09/17/20 16:03	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		2.0		ug/Kg		09/15/20 05:01	09/17/20 16:03	1
4:2 FTS	ND		2.0		ug/Kg		09/15/20 05:01	09/17/20 16:03	1
6:2 FTS	ND		2.0		ug/Kg		09/15/20 05:01	09/17/20 16:03	1
8:2 FTS	ND		2.0		ug/Kg		09/15/20 05:01	09/17/20 16:03	1

9/18/2020

Client Sample ID: Method Blank Prep Type: Total/NA

Job ID: 320-64510-1

Prep Type: Total/NA

Prep Batch: 412160

Client Sample ID: Lab Control Sample Dup

Client: Geosyntec Consultants, Inc. Project/Site: PFAS - Hollywood Burbank Airport

Method: EPA 537(Mod) - PFAS for QSM 5.1, Table B-15 (Continued)

	MB	MB					
Isotope Dilution	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac	
13C4 PFBA	64		50 - 150	09/15/20 05:01	09/17/20 16:03	1	-
13C5 PFPeA	65		50 - 150	09/15/20 05:01	09/17/20 16:03	1	
13C2 PFHxA	62		50 - 150	09/15/20 05:01	09/17/20 16:03	1	
13C4 PFHpA	65		50 - 150	09/15/20 05:01	09/17/20 16:03	1	
13C4 PFOA	63		50 - 150	09/15/20 05:01	09/17/20 16:03	1	
13C5 PFNA	67		50 - 150	09/15/20 05:01	09/17/20 16:03	1	
13C2 PFDA	66		50 - 150	09/15/20 05:01	09/17/20 16:03	1	
13C2 PFUnA	66		50 - 150	09/15/20 05:01	09/17/20 16:03	1	
13C2 PFDoA	66		50 - 150	09/15/20 05:01	09/17/20 16:03	1	
13C2 PFTeDA	64		50 - 150	09/15/20 05:01	09/17/20 16:03	1	
13C3 PFBS	66		50 - 150	09/15/20 05:01	09/17/20 16:03	1	
18O2 PFHxS	67		50 - 150	09/15/20 05:01	09/17/20 16:03	1	
13C4 PFOS	66		50 - 150	09/15/20 05:01	09/17/20 16:03	1	
13C8 FOSA	62		50 - 150	09/15/20 05:01	09/17/20 16:03	1	
d3-NMeFOSAA	62		50 - 150	09/15/20 05:01	09/17/20 16:03	1	
d5-NEtFOSAA	67		50 - 150	09/15/20 05:01	09/17/20 16:03	1	
M2-6:2 FTS	93		50 - 150	09/15/20 05:01	09/17/20 16:03	1	
M2-8:2 FTS	72		50 - 150	09/15/20 05:01	09/17/20 16:03	1	
M2-4:2 FTS	86		50 - 150	09/15/20 05:01	09/17/20 16:03	1	

Lab Sample ID: LCS 320-412162/2-A Matrix: Solid Analysis Batch: 413201

Analysis Batch: 413201							Prep Batch: 412162
	Spike	LCS					%Rec.
Analyte	Added		Qualifier	Unit	D	%Rec	Limits
Perfluorobutanoic acid (PFBA)	2.00	2.18		ug/Kg		109	76 - 136
Perfluoropentanoic acid (PFPeA)	2.00	1.89		ug/Kg		95	69 - 129
Perfluorohexanoic acid (PFHxA)	2.00	2.07		ug/Kg		104	71 - 131
Perfluoroheptanoic acid (PFHpA)	2.00	1.90		ug/Kg		95	71 - 131
Perfluorooctanoic acid (PFOA)	2.00	2.05		ug/Kg		103	72 - 132
Perfluorononanoic acid (PFNA)	2.00	2.07		ug/Kg		104	73 - 133
Perfluorodecanoic acid (PFDA)	2.00	2.03		ug/Kg		101	72 - 132
Perfluoroundecanoic acid	2.00	2.01		ug/Kg		100	66 - 126
(PFUnA)							
Perfluorododecanoic acid	2.00	2.07		ug/Kg		104	71 - 131
(PFDoA)							
Perfluorotridecanoic acid	2.00	2.16		ug/Kg		108	71 - 131
(PFTriA) Perfluorotetradecanoic acid	2.00	1.91		ug/Kg		96	67 - 127
(PFTeA)	2.00	1.01		uging		00	01 - 121
Perfluorobutanesulfonic acid	1.77	1.81		ug/Kg		102	69 - 129
(PFBS)							
Perfluoropentanesulfonic acid	1.88	1.83		ug/Kg		97	66 - 126
(PFPeS)							
Perfluorohexanesulfonic acid	1.82	1.72		ug/Kg		95	62 - 122
(PFHxS) Perfluoroheptanesulfonic Acid	1.90	2.04		ug/Kg		107	76 - 136
(PFHpS)	1.90	2.04		uy/Ny		107	70 - 150
Perfluorooctanesulfonic acid	1.86	2.05		ug/Kg		110	68 - 141
(PFOS)				0 0			
Perfluorodecanesulfonic acid	1.93	1.86		ug/Kg		97	71 - 131
(PFDS)							
Perfluorooctanesulfonamide	2.00	1.98		ug/Kg		99	77 - 137
(FOSA)							

Eurofins TestAmerica, Sacramento

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

4 5

Method: EPA 537(Mod) - PFAS for QSM 5.1, Table B-15 (Continued)

Matrix: Solid	ab Sample ID: LCS 320-412162/2-A atrix: Solid nalysis Batch: 413201					Clie	nt Sa	: Lab Control Sample Prep Type: Total/NA Prep Batch: 412162	
			Spike	-	LCS				%Rec.
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)			2.00	2.27		ug/Kg		114	72 - 132
N-ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)			2.00	1.90	J	ug/Kg		95	72 - 132
4:2 FTS			1.87	1.60	J	ug/Kg		85	68 - 143
6:2 FTS			1.90	1.75	J	ug/Kg		92	73 - 139
8:2 FTS			1.92	1.75	J	ug/Kg		91	75 - 135
	LCS	LCS							
Isotope Dilution	%Recovery	Qualifier	Limits						
13C4 PFBA	66		50 - 150						
13C5 PFPeA	68		50 - 150						
13C2 PFHxA	63		50 - 150						
13C4 PFHpA	73		50 - 150						
13C4 PFOA	70		50 - 150						
13C5 PFNA	71		50 - 150						
13C2 PFDA	72		50 - 150						
13C2 PFUnA	68		50 - 150						
13C2 PFDoA	67		50 - 150						
13C2 PFTeDA	70		50 - 150						
13C3 PFBS	69		50 - 150						
18O2 PFHxS	73		50 - 150						
13C4 PFOS	73		50 - 150						
13C8 FOSA	67		50 - 150						
d3-NMeFOSAA	62		50 - 150						
d5-NEtFOSAA	68		50 - 150						
M2-6:2 FTS	92		50 - 150						
M2-8:2 FTS	76		50 - 150						
M2-4:2 FTS	83		50 - 150						

Lab Sample ID: 320-64510-4 MS Matrix: Solid

Analysis Batch: 413201									Prep Batch: 412162
	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Perfluorobutanoic acid (PFBA)	ND		1.95	2.13		ug/Kg	¢	106	76 - 136
Perfluoropentanoic acid (PFPeA)	ND		1.95	1.87		ug/Kg	¢	96	69 - 129
Perfluorohexanoic acid (PFHxA)	ND		1.95	1.98		ug/Kg	☆	101	71 - 131
Perfluoroheptanoic acid (PFHpA)	ND		1.95	1.89		ug/Kg	☆	97	71 - 131
Perfluorooctanoic acid (PFOA)	ND		1.95	1.88		ug/Kg	¢	96	72 - 132
Perfluorononanoic acid (PFNA)	ND		1.95	1.89		ug/Kg	¢	97	73 - 133
Perfluorodecanoic acid (PFDA)	ND		1.95	1.98		ug/Kg	¢	101	72 - 132
Perfluoroundecanoic acid	ND		1.95	1.95		ug/Kg	¢	100	66 - 126
(PFUnA) Perfluorododecanoic acid (PFDoA)	ND		1.95	2.12		ug/Kg	¢	109	71 - 131
Perfluorotridecanoic acid (PFTriA)	ND		1.95	2.00		ug/Kg	₽	102	71 ₋ 131
Perfluorotetradecanoic acid (PFTeA)	ND		1.95	1.84		ug/Kg	₽	94	67 - 127
Perfluorobutanesulfonic acid (PFBS)	ND		1.73	1.70		ug/Kg	¢	99	69 - 129

Eurofins TestAmerica, Sacramento

Client Sample ID: SB-5A-150

Prep Type: Total/NA

5

8

9

Method: EPA 537(Mod) - PFAS for QSM 5.1, Table B-15 (Continued)

Lab Sample ID: 320-64510	-4 MS							Client S	Sample ID: SB-5A-150
Matrix: Solid									Prep Type: Total/NA
Analysis Batch: 413201									Prep Batch: 412162
	-	Sample	Spike		MS				%Rec.
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits
Perfluoropentanesulfonic acid (PFPeS)	ND		1.83	1.90		ug/Kg	<u>ф</u>	104	66 - 126
Perfluorohexanesulfonic acid (PFHxS)	ND		1.78	1.66		ug/Kg	₽	93	62 - 122
Perfluoroheptanesulfonic Acid	ND		1.86	1.91		ug/Kg	☆	103	76 - 136
(PFHpS)									
Perfluorooctanesulfonic acid (PFOS)	ND		1.81	2.00		ug/Kg	¢	110	68 - 141
Perfluorodecanesulfonic acid (PFDS)	ND		1.88	1.96		ug/Kg	¢	104	71 - 131
Perfluorooctanesulfonamide (FOSA)	ND		1.95	1.97		ug/Kg	₽	101	77 - 137
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	ND		1.95	2.07		ug/Kg	₽	106	72 - 132
N-ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)	ND		1.95	ND		ug/Kg	¢	98	72 - 132
4:2 FTS	ND		1.82	ND		ug/Kg	¢	87	68 - 143
6:2 FTS	ND		1.85	ND		ug/Kg	¢	91	73 - 139
8:2 FTS	ND		1.87	ND		ug/Kg	¢	98	75 - 135
	MS	MS							
Isotope Dilution	%Recovery	Qualifier	Limits						
13C4 PFBA	60		50 - 150						
13C5 PFPeA	62		50 - 150						
13C2 PFHxA	59		50 - 150						
13C4 PFHpA	66		50 - 150						
13C4 PFOA	61		50 - 150						
13C5 PFNA	68		50 - 150						
13C2 PFDA	62		50 - 150						
13C2 PFUnA	62		50 - 150						
13C2 PFDoA	61		50 - 150						
13C2 PFTeDA	61		50 - 150						
13C3 PFBS	57		50 - 150						
1802 PFHxS	61		50 - 150						
13C4 PFOS	59		50 - 150						
13C8 FOSA	60		50 - 150						
d3-NMeFOSAA	58		50 - 150 50 - 150						
d5-NEtFOSAA	58 62		50 - 150 50 - 150						
M2-6:2 FTS	68		50 - 150						
M2-8:2 FTS	60		50 - 150						
M2-4:2 FTS	67		50 - 150						

Lab Sample ID: 320-64510-4 MSD Matrix: Solid Analysis Batch: 413201

Analysis Batch: 413201									Prep Ba		
-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Perfluorobutanoic acid (PFBA)	ND		1.96	2.11		ug/Kg	¢	105	76 - 136	1	30
Perfluoropentanoic acid (PFPeA)	ND		1.96	1.87		ug/Kg	¢	95	69 - 129	0	30
Perfluorohexanoic acid (PFHxA)	ND		1.96	1.93		ug/Kg	¢	98	71 ₋ 131	3	30
Perfluoroheptanoic acid (PFHpA)	ND		1.96	1.91		ug/Kg	₽	97	71 - 131	1	30
Perfluorooctanoic acid (PFOA)	ND		1.96	1.93		ug/Kg	¢	98	72 - 132	3	30

Eurofins TestAmerica, Sacramento

Client Sample ID: SB-5A-150

Prep Type: Total/NA

Job ID: 320-64510-1

5

8 9

Method: EPA 537(Mod) - PFAS for QSM 5.1, Table B-15 (Continued)

Lab Sample ID: 320-64510 Matrix: Solid Analysis Batch: 413201	-4 MSD							Client S	Sample ID Prep Ty Prep Ba	pe: Tot	al/NA
····· , ··· ······	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Perfluorononanoic acid (PFNA)	ND		1.96	2.08		ug/Kg	<u>⊅</u>	106	73 - 133	10	30
Perfluorodecanoic acid (PFDA)	ND		1.96	1.99		ug/Kg	☆	102	72 - 132	1	30
Perfluoroundecanoic acid (PFUnA)	ND		1.96	2.07		ug/Kg	₽	105	66 - 126	6	30
Perfluorododecanoic acid (PFDoA)	ND		1.96	1.93		ug/Kg	¢	98	71 - 131	9	30
Perfluorotridecanoic acid (PFTriA)	ND		1.96	1.97		ug/Kg	₽	100	71 - 131	2	30
Perfluorotetradecanoic acid (PFTeA)	ND		1.96	1.83		ug/Kg	¢	93	67 - 127	1	30
Perfluorobutanesulfonic acid (PFBS)	ND		1.74	1.79		ug/Kg	☆	103	69 - 129	5	30
Perfluoropentanesulfonic acid (PFPeS)	ND		1.84	1.81		ug/Kg	₽	98	66 - 126	5	30
Perfluorohexanesulfonic acid (PFHxS)	ND		1.79	1.69		ug/Kg	¢	94	62 - 122	2	30
Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.87	1.93		ug/Kg	¢	103	76 - 136	1	30
Perfluorooctanesulfonic acid (PFOS)	ND		1.82	1.95		ug/Kg	¢	107	68 - 141	3	30
Perfluorodecanesulfonic acid (PFDS)	ND		1.89	1.96		ug/Kg	☆	104	71 ₋ 131	0	30
Perfluorooctanesulfonamide (FOSA)	ND		1.96	2.08		ug/Kg	☆	106	77 ₋ 137	5	30
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	ND		1.96	2.20		ug/Kg	☆	112	72 - 132	6	30
N-ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)	ND		1.96	ND		ug/Kg	☆	98	72 - 132	1	30
4:2 FTS	ND		1.83	ND		ug/Kg	¢	91	68 - 143	6	30
6:2 FTS	ND		1.86	ND		ug/Kg		97	73 - 139	7	30
8:2 FTS	ND		1.88	ND		ug/Kg	☆	101	75 - 135	4	30
	MSD	MSD				0 0					
Isotope Dilution	%Recovery		Limits								
13C4 PFBA	74		50 - 150								
13C5 PFPeA	76		50 - 150								
13C2 PFHxA	74		50 - 150								
13C4 PFHpA	79		50 - 150								
13C4 PFOA	73		50 - 150								
13C5 PFNA	77		50 - 150								
13C2 PFDA	75		50 - 150 50 - 150								
13C2 PFUnA	73		50 - 150 50 - 150								
13C2 PFDoA	78		50 - 150								
13C2 PFTeDA	76		50 - 150								
13C3 PFBS	70		50 - 150								
18O2 PFHxS	73		50 - 150								
13C4 PFOS	71		50 - 150								
13C8 FOSA	73		50 - 150								
d3-NMeFOSAA	68		50 - 150								
d5-NEtFOSAA	74		50 - 150								
M2-6:2 FTS	80		50 - 150								
M2-8:2 FTS	77		50 - 150								
M2-4:2 FTS	79		50 - 150								

Eurofins TestAmerica, Sacramento

Method: D 2216 - Percent Moisture

Lab Sample ID: 720-99789- Matrix: Solid Analysis Batch: 411971	-D-4 DU					Clien	t Sample ID: Dup Prep Type: Tot	
	•	Sample		DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Percent Moisture	6.4		6.8		%		5	20
Percent Solids	93.6		93.2		%		0.4	20

QC Association Summary

Prep Type

Matrix

Method

Client: Geosyntec Consultants, Inc. Project/Site: PFAS - Hollywood Burbank Airport

Client Sample ID

LCMS

Prep Batch: 412160

Lab Sample ID

Job ID: 320-64510-1

Prep Batch

Eas Gampio is			matrix	motriou	i iop Baton	
320-64510-1	EB-200910	Total/NA	Water	3535		
320-64510-2	FB-200910	Total/NA	Water	3535		5
MB 320-412160/1-A	Method Blank	Total/NA	Water	3535		
LCS 320-412160/2-A	Lab Control Sample	Total/NA	Water	3535		
LCSD 320-412160/3-A	Lab Control Sample Dup	Total/NA	Water	3535		
Prep Batch: 412162						
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	8
320-64510-3	SB-5A-140	Total/NA	Solid	SHAKE		
320-64510-4	SB-5A-150	Total/NA	Solid	SHAKE		9
320-64510-5	SB-5A-160	Total/NA	Solid	SHAKE		
MB 320-412162/1-A	Method Blank	Total/NA	Solid	SHAKE		
LCS 320-412162/2-A	Lab Control Sample	Total/NA	Solid	SHAKE		
320-64510-4 MS	SB-5A-150	Total/NA	Solid	SHAKE		
320-64510-4 MSD	SB-5A-150	Total/NA	Solid	SHAKE		
Analysis Batch: 412	2401					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	4.5
320-64510-1	EB-200910	Total/NA	Water	EPA 537(Mod)	412160	
320-64510-2	FB-200910	Total/NA	Water	EPA 537(Mod)	412160	
MB 320-412160/1-A	Method Blank	Total/NA	Water	EPA 537(Mod)	412160	
LCS 320-412160/2-A	Lab Control Sample	Total/NA	Water	EPA 537(Mod)	412160	
LCSD 320-412160/3-A	Lab Control Sample Dup	Total/NA	Water	EPA 537(Mod)	412160	
Analysis Batch: 413	201					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
320-64510-3	SB-5A-140	Total/NA	Solid	EPA 537(Mod)	412162	

320-64510-3	SB-5A-140	Total/NA	Solid	EPA 537(Mod)	412162
320-64510-4	SB-5A-150	Total/NA	Solid	EPA 537(Mod)	412162
320-64510-5	SB-5A-160	Total/NA	Solid	EPA 537(Mod)	412162
MB 320-412162/1-A	Method Blank	Total/NA	Solid	EPA 537(Mod)	412162
LCS 320-412162/2-A	Lab Control Sample	Total/NA	Solid	EPA 537(Mod)	412162
320-64510-4 MS	SB-5A-150	Total/NA	Solid	EPA 537(Mod)	412162
320-64510-4 MSD	SB-5A-150	Total/NA	Solid	EPA 537(Mod)	412162

General Chemistry

Analysis Batch: 411971

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
320-64510-3	SB-5A-140	Total/NA	Solid	D 2216	
320-64510-4	SB-5A-150	Total/NA	Solid	D 2216	
320-64510-5	SB-5A-160	Total/NA	Solid	D 2216	
720-99789-D-4 DU	Duplicate	Total/NA	Solid	D 2216	

Lab Sample ID: 320-64510-1 Matrix: Water 5 6 7 10

Client Sample ID: EB-200910 Date Collected: 09/10/20 12:20 Date Received: 09/11/20 10:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			279 mL	10.0 mL	412160	09/15/20 04:37	EG	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			412401	09/15/20 19:42	S1M	TAL SAC
lient Samp							L	ab Sample		
ate Collected									Ma	trix: Wate
-	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			280.6 mL	10.0 mL	412160	09/15/20 04:37	EG	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			412401	09/15/20 19:51	S1M	TAL SAC
lient Samp	ole ID: SB-	-5A-140					L	ab Sample	ID: 320	-64510
Date Collected								-	Ма	atrix: Sol
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1			411971	09/14/20 14:16	TCS	TAL SAC
Client Samp	ole ID: SB-	-5A-140					L	ab Sample	ID: 320	-64510
Date Collected										atrix: Sol
Date Received								Р		olids: 94
-	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	SHAKE			5.34 g	10.0 mL	412162	09/15/20 05:01	NSS	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1	5.5 · g	1010 1112	413201	09/17/20 16:50		TAL SAC
Client Samp	ole ID: SB-	5A-150					1	ab Sample	ID: 320	-64510
Date Collected										atrix: Soli
Date Received										
-	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1			411971	09/14/20 14:16	TCS	TAL SAC
Client Samp	ole ID: SB-	5A-150					L	ab Sample	ID: 320	-64510
Date Collected							_			atrix: Sol
Date Received								Р		olids: 96
-	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
	1366	methou	Run	1 40101	Amount	Amount		Si Analyzeu	Analyst	
	Pren	SHAKE			5 08 0	10.0 ml	412162	09/15/20 05:01	NSS	TAL SAC
Total/NA Total/NA	Prep Analysis	SHAKE EPA 537(Mod)		1	5.08 g	10.0 mL	412162 413201	09/15/20 05:01 09/17/20 16:22		TAL SAC TAL SAC

Matrix: Solid

Lab Sample ID: 320-64510-5

Client Sample ID: SB-5A-160 Date Collected: 09/10/20 10:20 Date Received: 09/11/20 10:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1			411971	09/14/20 14:16	TCS	TAL SAC
Client Sam	ple ID: SB-	5A-160					L	ab Sample	ID: 320	-64510-
Date Collecte	d: 09/10/20 1	0:20							Ма	atrix: Solio
	d: 09/10/20 1 d: 09/11/20 1							P		atrix: Solid olids: 97.2
				Dil	Initial	Final	Batch	P		
	d: 09/11/20 1	0:15	Run	Dil Factor	Initial Amount	Final Amount	Batch Number			
Date Receive	d: 09/11/20 1 Batch	0:15 Batch	Run					Prepared	ercent S	olids: 97./

Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Accreditation/Certification Summary

Client: Geosyntec Consultants, Inc. Project/Site: PFAS - Hollywood Burbank Airport Job ID: 320-64510-1

Laboratory: Eurofins TestAmerica, Sacramento

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority	Prog	ram	Identification Number	Expiration Date
California	State	•	2897	01-31-22
	and to should deal to the terms and	head dhead and a metal and the metal of the	- the set of the state of the set	This list was included as a base for such
The following analytes the agency does not o		but the laboratory is r	ot certified by the governing authority.	I his list may include analytes for which
0,		Matrix	Analyte	This list may include analytes for whit
the agency does not o	fer certification.			I his list may include analytes for whit

Eurofins TestAmerica, Sacramento

Method Summary

Client: Geosyntec Consultants, Inc. Project/Site: PFAS - Hollywood Burbank Airport

Method	Method Description	Protocol	Laboratory
EPA 537(Mod)	PFAS for QSM 5.1, Table B-15	EPA	TAL SAC
0 2216	Percent Moisture	ASTM	TAL SAC
3535	Solid-Phase Extraction (SPE)	SW846	TAL SAC
SHAKE	Shake Extraction with Ultrasonic Bath Extraction	SW846	TAL SAC

Protocol References:

ASTM = ASTM International

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Sample Summary

Client: Geosyntec Consultants, Inc. Project/Site: PFAS - Hollywood Burbank Airport

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset
320-64510-1	EB-200910	Water	09/10/20 12:20	09/11/20 10:15	
320-64510-2	FB-200910	Water	09/10/20 12:23	09/11/20 10:15	
320-64510-3	SB-5A-140	Solid	09/10/20 09:21	09/11/20 10:15	
320-64510-4	SB-5A-150	Solid	09/10/20 10:18	09/11/20 10:15	
320-64510-5	SB-5A-160	Solid	09/10/20 10:20	09/11/20 10:15	

				Page	-	of 1			Lab LIMS No:			
	SC	Bill to/Report	Bill to/Report to (if different)									
									LAB USE UNLY:			DW: DRINKING WATER
702 Electronic Drive Phor	Phone: 215-355-3900								# Ascorbic/HCL Vials	CL Vials #	HCI Vials	GW: GROUND WATER
Horsham, PA 19044-0962 Fax:	215-355-7231	Sampling Sit	Sampling Site Address (if different)		Include State				# _ Na2S203_		-	WW: WASTEWATER
Client/Acd. No. Geosyntec Consultants	sultants	à	Burban	K.	t				# Na OH/Zn acetate pH	Icetate pH		SO: SOIL
Address 65 N. Raymond Ave	Ave				-				# _ HNO3 PH _			SL: SLUDGE
Suite 200									# _ H2SO4 pH			OIL: OIL
City/State/Zip Pasadena, CA 9	CA 91103	P.O. No. /	P.O. No. WR2693 - 02A	2A	PWSID	#:			# NaOHpH			SOL: NON SOIL SOLID
		Quote #	570059	5935	10				# Unpreserved	p		MI: MISCELLANEOUS
Client Contact: Mital Desai		e-mail: md	e-mail: mdesai@geosyntec	intec.com					# HCI #	NH4CI	# MeOH	X: OTHER
PROJECT		Collection		c		Number	of Containers		*	DI Water		
FIELD ID		Date	Military A Time B	Matrix M Code	de Total	∞ _ ø _ <			ANA	T YSI	ESTED	Field pH, Temp (⁰ C), DO, Cl2, Cond. etc.
EB- 2010 200910		01/01/P	X DEC/02/0/16	MM	н	4	1		FAS (23 analy	tes as requi	PFAS (23 analytes as required by CA ELAP)	
		-	xcee1	MM	1		1		PFAS (23 analy	rtes as requi	PFAS (23 analytes as required by CA ELAP)	
SB-5A- 14D			x1260	SO	-1		1		PFAS (23 analy	rtes as requi	analytes as required by CA ELAP)	
SB-5A- 150			× 810	SO	-		1		PFAS (23 analy	rtes as requi	analytes as required by CA ELAP)	
SB-5A- 160			×0201	SO	1		1		PFAS (23 analy	rtes as requi	analytes as required by CA ELAP)	
SB-54-		-	×	SO	1		1		PFAS (23 anal)	rtes as requi	analytes as required by CA ELAP)	
SB-54-			×	SO			1		PFAS (23 analy	rtes as requir	analytes as required hy CA FLAP)	
SB-EA-			×	SO	1		1		PFAS (23 analytes as re	rtes as re		
SB-54-			×	SO	1				PFAS (23 analytes as re	rtes as re		
SB-5M-		7	×	SO	-		1		PFAS (23 analytes as re	rtes as re	320 64510 Chain of Custody	
SAMPLEDBY: (Name/Company)	TAT: DETANDARD (10 DAY)	ARD (10 DA)		Report Forma	Format: Standard	1	ONJ-RDD	SRP-RDD				cusiouy
J. Loper Geosyntec	or DUE DATE	1		 Standard + QC 		□ Forms	NEDD		Initials		D	Date/Time:
	Please call for pricing and availability for rush (<10 day) turnaround and for all but standard reporting format.	and availa	bility for rush (<	10 day) turn.	around and 1	or all but sta	ndard reporting	format.				
SAMPLE CUSTODY EXCHANGES MUST BE DOCUMENTED BELOW. USE	S MUST BE DOC	UMENTED	BELOW. I		LEGAL	SIGNATU	FULL LEGAL SIGNATURE, DATE AND MILITARY	AND MIL	ITARY TIME (24	HOUR CLOC	TIME (24 HOUR CLOCK, I.E. 8AM IS 0800, 4 PM IS 1600	0, 4 PM IS 1600)
RELINQUISHED BY SAMPLER	DATE DATE	TIME RE	RECEIVED BY	X	ete	eta sac	DATE DATE	TAN 10	5	DELIVERY: DEQC COURIER	IRIER CLIENT	Custody Seal Number
Ŋ			ECEIVED BY	P				TIME		Rec'd Temp 16 C/2 0 Initials		IceAN Location:
RELINQUISHED BY	DATE	TIME R	RECEIVED BY			-	DATE	TIME		NTS:		
RELINQUISHED BY 4.	DATE	TIME R	ECEIVED BY				DATE	TIME	ш			
RELINQUISHED BY	DATE	TIME R	RECEIVED BY				DATE	TIME	u			
		0							Hazarde	Hazardone ves / no		

Login Sample Receipt Checklist

Client: Geosyntec Consultants, Inc.

Login Number: 64510 List Number: 1 Creator: Nuval, Mark-Anthony M

Question	Answer	Comment
		Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 320-64510-1

List Source: Eurofins TestAmerica, Sacramento

APPENDIX F

Groundwater Laboratory Data

PFAS Results

🔅 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Sacramento 880 Riverside Parkway West Sacramento, CA 95605 Tel: (916)373-5600

Laboratory Job ID: 320-64765-1

Client Project/Site: PFAS - Hollywood Burbank Airport

For:

..... Links

Review your project results through

Total Access

Have a Question?

Ask-

The

www.eurofinsus.com/Env

Visit us at:

Expert

Geosyntec Consultants, Inc. 65 N. Raymond Avenue Suite 200 Pasadena, California 91103

Attn: Mital Desai

2. G. Typ

Authorized for release by: 9/29/2020 3:50:38 PM

Laura Turpen, Project Manager I (916)374-4414 Laura.Turpen@Eurofinset.com

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.
Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Isotope Dilution Summary	12
QC Sample Results	14
QC Association Summary	18
Lab Chronicle	19
Certification Summary	20
Method Summary	21
Sample Summary	22
Chain of Custody	23
Receipt Checklists	24

Definitions/Glossary

Client: Geosyntec Consultants, Inc. Project/Site: PFAS - Hollywood Burbank Airport

Job ID: 320-64765-1

Abbreviation Tese commonly used abbreviations may on the present in this report. Isted under the "D" column to designate that the result is reported on a dry weight basis I %R Percent Recovery 5 CFL Colarins Free Liquid 5 CVF Colarins Free Liquid 6 DFR Duplicate Error Ratio (normalized absolute difference) 6 DI Fac Dilution Factor 7 DL Detection Limit (DoD/DOE) 7 DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample 8 DLC Detection Limit (DoD/DOE) 8 DLO Limit of Quantitation (DoD/DOE) 8 DQ Limit of Quantitation (DoD/DOE) 9 LOQ Limit of Quantitation (DoD/DOE) 9 LOQ Limit of Quantitation (Codordemistry) 9 MDL EPA recommended "Maximum Contaminant Level" 9 MDL Method Quantitation Limit 10 MDL Method Quantitation Limit 10 MDL Method Quantitation Limit 11	Glossary		 3
%R Percent Recovery 1 CFL Contains Free Liquid 5 CFU Colony Forning Unit 6 CNF Contains No Free Liquid 6 DFR Diluticate Error Ratio (normalized absolute difference) 6 DI Fac Diluticates an Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample 7 DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample 8 DLC Decision Level Concentration (Radiochemistry) 8 EDL Estimated Detection (DoD/DOE) 9 LOQ Limit of Outol/DOE) 9 LOQ Limit of Counditation (ROD/DOE) 9 MDA Minimum Detectable Concentration (Radiochemistry) 9 MDA Minimum Detectable Concentration (Radiochemistry) 9 MDA Minimum Detectable Concentration (Radiochemistry) 10 MDA Minimum Detectable Concentration (Radiochemistry) 11 MDA Minimum Detectable Concentration (Radiochemistry) 11	Abbreviation	These commonly used abbreviations may or may not be present in this report.	0
CFLContains Free Liquid5CFUConvy Forming Unit6CFUContains No Free Liquid6DERUplicate Error Ratio (normalized absolute difference)6DI FacDiution Factor7DLDetection Limit (DOD/DOE)7DL, RA, RE, INIndicates a Diution, Ra-enalysis, Re-extraction, or additional Initial metals/anion analysis of the sample8DLCDesision Level Concentration (Radiochemistry)9DCLLimit of Ocentration (DOD/DOE)9LOQLimit of Ocentration (DOD/DOE)9LOQLimit of Ouentitation (DOD/DOE)9LOQHinimum Detectable Activity (Radiochemistry)10MDAMinimum Detectable Concentration (Radiochemistry)10MDAMinimum Detectable Concentration (Radiochemistry)11MDLMethod Detection Limit13NDMotol Potection Limit (No MDL or EDL if shown)14NDNot Detected at the reporting limit (or MDL or EDL if shown)14NCNot Calculated13NDNot Detected at the reporting limit (or MDL or EDL if shown)14NESPractical Quantitation Limit15PRESPresent15PRESPresent15PRESPresent15PRESPresent Radiochemistry)15RERelative Forrer Ratio (Radiochemistry)15RERelative Forrer Ratio (Radiochemistry)15RERelative Forrer Ratio (Radiochemistry)15 <td< td=""><td>¤</td><td>Listed under the "D" column to designate that the result is reported on a dry weight basis</td><td></td></td<>	¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
CFUColony Forming Unit3CNFContains No Free Liquid6DERDuplicate Error Ratio (normalized absolute difference)6DI FacDilution Factor7DLDetection Limit (DoD/DCP)7DL, RA, RE, INIndicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample7DLDecision Level Concentration (Radiochemistry)8EDLEstimated Detection Limit (DioXin)9LOLimit of Detection (DoD/DCP)9LOLimit of Quartitation (DoD/DCP)10MCLEPA recommended "Maximum Contaminant Level"10MDAMinimum Detectable Activity (Radiochemistry)10MDLMinimum Detectable Activity (Radiochemistry)10MDLMost Probable Number11MLMost Probable Number13NCNot Calculated14NDANot Detectable Teroprting limit (or MDL or EDL if shown)14NEGNegative / Absent14POLPractcal Quantitation Limit15PRESPresumptive15PRESPresumptive15PRESPresumptive15PRESPresumptive15PRESPresumptive15PRESRelative Prevent Difference, a measure of the relative difference between two points15FEFToxicity Equivalent Factor (Dioxin)15FEFToxicity Equivalent Factor (Dioxin)15FEFToxicity Equivalent Factor (Dio	%R	Percent Recovery	
CNFContains No Free Liquid6DERDuplicate Error Ratio (normalized absolute difference)6Dil FaceDiution Factor7DDetection Limit (DoD/DOE)7DL, RA, RE, INIndicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample8DLCDetection Limit (DoX/DOE)8DLCEstimated Detection (Madiochemistry)9LODLimit of Detection (DoD/DOE)9LOQLimit of Detection (DoD/DOE)9LOQMinimum Detectable Activity (Radiochemistry)10MDAMinimum Detectable Activity (Radiochemistry)11MDLMethod Detection Limit12MDLMinimum Detectable Concentration (Radiochemistry)11MDLMethod Detection Limit13MDLMethod Quantitation Limit13NDNot Detected at the reporting limit (or MDL or EDL if shown)14NDNot Detected authier porting limit (or MDL or EDL if shown)14NDPositive / Present15PRESPesumptive15PRESPesumptive15PRESPesumptive15PRESPesumptive15PRESPesumptive15PRESPesumptive15PRESPesumptive15PRESPesumptive15PRESPesumptive15PRESPesumptive Error Ratio (Radiochemistry)15RLRelative Error Ratio (Radiochemistry)1	CFL	Contains Free Liquid	5
Dilface Dilution Reador 7 DL Detection Limit (DoD/DOE) 7 DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample 8 DL Decision Level Concentration (Radiochemistry) 8 EDL Estimated Detection Limit (Dioxin) 9 LOQ Limit of Detection (DoD/DOE) 9 LOQ Limit of Detection (DoD/DOE) 9 MCL EPA recommended "Maximum Contaminant Level" 10 MDA Minimum Detectable Activity (Radiochemistry) 10 MDL Method Detection Limit 10 MDL Method Detection Limit 11 ML Minimum Detectable Activity (Radiochemistry) 11 MDL Method Detection Limit 12 MDL Method Detection Limit 12 MQL Method Quantitation Limit 13 NC Not Calculated 13 ND Not Detected at the reporting limit (or MDL or EDL if shown) 14 POS Positive / Present 14 POS Positive / Present 15 PRES <td>CFU</td> <td>Colony Forming Unit</td> <td>J</td>	CFU	Colony Forming Unit	J
Dilface Dilution Reador 7 DL Detection Limit (DoD/DOE) 7 DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample 8 DL Decision Level Concentration (Radiochemistry) 8 EDL Estimated Detection Limit (Dioxin) 9 LOQ Limit of Detection (DoD/DOE) 9 LOQ Limit of Detection (DoD/DOE) 9 MCL EPA recommended "Maximum Contaminant Level" 10 MDA Minimum Detectable Activity (Radiochemistry) 10 MDL Method Detection Limit 10 MDL Method Detection Limit 11 ML Minimum Detectable Activity (Radiochemistry) 11 MDL Method Detection Limit 12 MDL Method Detection Limit 12 MQL Method Quantitation Limit 13 NC Not Calculated 13 ND Not Detected at the reporting limit (or MDL or EDL if shown) 14 POS Positive / Present 14 POS Positive / Present 15 PRES <td>CNF</td> <td>Contains No Free Liquid</td> <td></td>	CNF	Contains No Free Liquid	
DLDetection Limit (DoD/DOE)[1]DL, RA, RE, INIndicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample[3]DLCDecision Lovel Concentration (Radiochemistry)[3]EDLEstimated Detection (DoD/DOE)[3]LOQLimit of Detection (DoD/DOE)[3]LOQLimit of Quantitation (DoD/DOE)[3]MCLEPA recommended "Maximum Contaminant Level"[4]MDAMinimum Detectable Activity (Radiochemistry)[1]MDCMinimum Detectable Activity (Radiochemistry)[1]MDLMethod Detection Limit[1]MLMonimum Level (Dioxin)[1]MLMonimum Level (Dioxin)[1]MQLMothod Quantitation Limit[1]NCNo Calculated[1]NDNot Detectad at the reporting limit (or MDL or EDL if shown)[1]NGNo I Detectad at the reporting limit (or MDL or EDL if shown)[1]NGNo I Detectad at the reporting limit (or MDL or EDL if shown)[1]NGNo I Detectad at the reporting limit (or MDL or EDL if shown)[1]PQLPractical Quantitation Limit[1]PQLPractical Quantitation Limit[1]PRESPresumtive[1]PRESPresumtive[1]PRESPresumtive[1]PRESPresumtive[1]PRESRelative Proreation (Radiochemistry)[1]RPRelative Error Ratio (Radiochemistry)[1]RPRelative	DER	Duplicate Error Ratio (normalized absolute difference)	
DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample 8 DLC Decision Level Concentration (Radiochemistry) 8 EDL Estimated Detection Limit (Dioxin) 9 LOD Limit of Detection (DoD/DOE) 9 LOQ Limit of Quantitation (DoD/DOE) 10 MDA Kinimum Detectable Activity (Radiochemistry) 10 MDA Minimum Detectable Concentration (Radiochemistry) 10 MDL Mothod Detection Limit 11 ML Minimum Detectable Concentration (Radiochemistry) 11 MDL Minimum Detectable Concentration (Radiochemistry) 11 MDL Mothod Detection Limit 11 ML Minimum Detectable Concentration (Radiochemistry) 11 MDL Method Quantitation Limit 11 ND Not Calculated 11 NC Not Calculated 11 ND Not Calculated 11 ND Not Calculated 11 ND Not Calculated 11 POS Positive / Present 14 POS </td <td>Dil Fac</td> <td>Dilution Factor</td> <td></td>	Dil Fac	Dilution Factor	
DLCDecision Level Concentration (Radiochemistry)8EDLEstimated Detection Limit (Dioxin)9LODLimit of Detection (DoD/DOE)9LOQLimit of Quantitation (DoD/DOE)10MCLEPA recommended "Maximum Contaminant Level"10MDAMinimum Detectable Activity (Radiochemistry)10MDCMinimum Detectable Concentration (Radiochemistry)11MDLMethod Detection Limit11MLMethod Detection Limit12MQLMost Probable Number13NCNot Calculated13NCNot Calculated13NDNot Calculated14POSPositive / Present14POLPractical Quantitation Limit15PQLQualtitation Limit15PRESPresumptive15QCQuality Control15RERRelative Error Ratio (Radiochemistry)16RERRelative Error Ratio (Radiochemistry)16RPDRelative Error Ratio (Radiochemistry)17RPDRelative Error Ratio (Radiochemistry)	DL	Detection Limit (DoD/DOE)	
EDLEstimated Detection Limit (Dioxin)9LODLimit of Detection (DoD/DOE)9LOQLimit of Quantitation (DoD/DOE)10MCLEPA recommended "Maximum Contaminant Level"10MDAMinimum Detectable Activity (Radiochemistry)11MDCMinimum Detectable Concentration (Radiochemistry)11MDLMethod Detection Limit12MLMinimum Level (Dioxin)12MPNMost Probable Number13MQLMethod Quantitation Limit13NCNot Calculated13NCNot Detected at the reporting limit (or MDL or EDL if shown)14POSPositive / Absent15POSPositive / Absent15PRESPresumptive15QCQuality Control15RERRelative Error Ratio (Radiochemistry)15RLReporting Limit or Requested Limit (Radiochemistry)16REPRoxing Limit or Requested Limit (Radiochemistry)15REPRoxing Limit or Requested Limit (Radiochemistry)16REPRoxing Limit or Requested Limit (Radiochemistry)17RLReporting Limit or Requested Limit (Radiochemistry)17REPRoxing Limit or Requested Limit (Radiochemistry)17REPRoxing Limit or Requested Limit (Radiochemistry)17REPToxicity Equivalent Factor (Dioxin)17TEQToxicity Equivalent Actor (Dioxin)17	DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
EDLEstimated Detection Limit (Dioxin)9LODLimit of Detection (DoD/DOE)9LOQLimit of Quantitation (DoD/DOE)10MCLEPA recommended "Maximum Contaminant Level"10MDAMinimum Detectable Activity (Radiochemistry)11MDCMinimum Detectable Concentration (Radiochemistry)11MDLMethod Detection Limit12MLMinimum Level (Dioxin)12MPNMost Probable Number13MQLMethod Quantitation Limit13NCNot Calculated13NCNot Detected at the reporting limit (or MDL or EDL if shown)14POSPositive / Absent15POSPositive / Absent15PRESPresumptive15QCQuality Control15RERRelative Error Ratio (Radiochemistry)15RLReporting Limit or Requested Limit (Radiochemistry)16REPRoxing Limit or Requested Limit (Radiochemistry)15REPRoxing Limit or Requested Limit (Radiochemistry)16REPRoxing Limit or Requested Limit (Radiochemistry)17RLReporting Limit or Requested Limit (Radiochemistry)17REPRoxing Limit or Requested Limit (Radiochemistry)17REPRoxing Limit or Requested Limit (Radiochemistry)17REPToxicity Equivalent Factor (Dioxin)17TEQToxicity Equivalent Actor (Dioxin)17	DLC	Decision Level Concentration (Radiochemistry)	8
LOQLimit of Quantitation (DoD/DOE)MCLEPA recommended "Maximum Contaminant Level"10MDAMinimum Detectable Activity (Radiochemistry)11MDCMinimum Detectable Concentration (Radiochemistry)11MDLMethod Detection Limit11MLMinimum Level (Dioxin)12MQLMethod Quantitation Limit13NCNot SP robable Number13MQLMethod Quantitation Limit (or MDL or EDL if shown)14NCNot Calculated14POSPositive / Absent14PQLPractical Quantitation Limit15PRESPresumptive15QCQuality Control15RERRelative Error Ratio (Radiochemistry)16RERRelative Percent Difference, a measure of the relative difference between two points16TEFToxicity Equivalent Factor (Dioxin)17TEQToxicity Equivalent Quotient (Dioxin)17	EDL	Estimated Detection Limit (Dioxin)	
LOQLimit of Quantitation (DoD/DOE)MCLEPA recommended "Maximum Contaminant Level"10MDAMinimum Detectable Activity (Radiochemistry)11MDCMinimum Detectable Concentration (Radiochemistry)11MDLMethod Detection Limit11MLMinimum Level (Dioxin)12MQLMethod Quantitation Limit13NCNot SP robable Number13MQLMethod Quantitation Limit (or MDL or EDL if shown)14NCNot Calculated14POSPositive / Absent14PQLPractical Quantitation Limit15PRESPresumptive15QCQuality Control15RERRelative Error Ratio (Radiochemistry)16RERRelative Percent Difference, a measure of the relative difference between two points16TEFToxicity Equivalent Factor (Dioxin)17TEQToxicity Equivalent Quotient (Dioxin)17	LOD	Limit of Detection (DoD/DOE)	9
MDAMinimum Detectable Activity (Radiochemistry)MDCMinimum Detectable Concentration (Radiochemistry)11MDLMethod Detection Limit12MLMinimum Level (Dioxin)12MPNMost Probable Number13MQLMethod Quantitation Limit13NCNot Calculated13NDNot Detected at the reporting limit (or MDL or EDL if shown)14PSPositive / Present15PQLPractical Quantitation Limit15PRESPresumptive15QCQuality Control15RERRelative Error Ratio (Radiochemistry)16RPDRelative Error Ratio (Radiochemistry)17RDRelative Percent Difference, a measure of the relative difference between two points16TEFToxicity Equivalent Factor (Dioxin)17TEQToxicity Equivalent Quotient (Dioxin)17	LOQ	Limit of Quantitation (DoD/DOE)	
MDCMinimum Detectable Concentration (Radiochemistry)11MDLMethod Detection Limit11MLMinimum Level (Dioxin)12MPNMost Probable Number13MQLMethod Quantitation Limit13NCNot Calculated13NDNot Detected at the reporting limit (or MDL or EDL if shown)14POSPositive / Absent15POSPositive / Present15PQLPractical Quantitation Limit15PRESPresumptive15QCQuality Control14RERRelative Error Ratio (Radiochemistry)14RLReporting Limit or Requested Limit (Radiochemistry)15RPDRelative Precent Difference, a measure of the relative difference between two points15TEFToxicity Equivalent Factor (Dioxin)14TEQToxicity Equivalent Quotient (Dioxin)14	MCL	EPA recommended "Maximum Contaminant Level"	
MDLMethod Detection LimitMLMinimum Level (Dioxin)MPNMost Probable NumberMQLMethod Quantitation LimitNCNot CalculatedNDNot Detected at the reporting limit (or MDL or EDL if shown)NEGNegative / AbsentPOSPositive / PresentPQLPractical Quantitation LimitPRESPresumptiveQCQuality ControlRERRelative Error Ratio (Radiochemistry)RLRelative Percent Difference, a measure of the relative difference between two pointsTEFToxicity Equivalent Factor (Dioxin)TEQToxicity Equivalent Quotient (Dioxin)	MDA	Minimum Detectable Activity (Radiochemistry)	
MLMinimu Level (Dioxin)12MPNMost Probable Number13MQLMethod Quantitation Limit13NCNot Calculated13NDNot Detected at the reporting limit (or MDL or EDL if shown)14NEGNegative / Absent14POSPositive / Present15PQLPractical Quantitation Limit15PRESPresumptive15QCQuality Control15RERRelative Error Ratio (Radiochemistry)16RLReporting Limit or Requested Limit (Radiochemistry)16RPDRelative Percent Difference, a measure of the relative difference between two points16TEFToxicity Equivalent Factor (Dioxin)16TEQToxicity Equivalent Quotient (Dioxin)16	MDC	Minimum Detectable Concentration (Radiochemistry)	
MPNMost Probable NumberMQLMethod Quantitation LimitNCNot CalculatedNDNot Detected at the reporting limit (or MDL or EDL if shown)NEGNegative / AbsentPOSPositive / PresentPQLPractical Quantitation LimitPRESPresumptiveQCQuality ControlRERRelative Error Ratio (Radiochemistry)RLReporting Limit or Requested Limit (Radiochemistry)RPDRelative Precent Difference, a measure of the relative difference between two pointsTEFToxicity Equivalent Factor (Dioxin)TEQToxicity Equivalent Quotient (Dioxin)	MDL	Method Detection Limit	
MQLMethod Quantitation Limit13NCNot Calculated13NDNot Detected at the reporting limit (or MDL or EDL if shown)14NEGNegative / Absent14POSPositive / Present15PQLPractical Quantitation Limit15PRESPresumptive15QCQuality Control15RERRelative Error Ratio (Radiochemistry)16RLReporting Limit or Requested Limit (Radiochemistry)16RPDRelative Percent Difference, a measure of the relative difference between two points16TEFToxicity Equivalent Factor (Dioxin)16TEQToxicity Equivalent Quotient (Dioxin)16	ML	Minimum Level (Dioxin)	
NCNot CalculatedINDNot Detected at the reporting limit (or MDL or EDL if shown)INEGNegative / AbsentIPOSPositive / PresentIPQLPractical Quantitation LimitIPRESPresumptiveIQCQuality ControlIRERRelative Error Ratio (Radiochemistry)RLReporting Limit or Requested Limit (Radiochemistry)RPDRelative Percent Difference, a measure of the relative difference between two pointsTEFToxicity Equivalent Factor (Dioxin)TEQToxicity Equivalent Quotient (Dioxin)	MPN	Most Probable Number	
PRESPresumptiveQCQuality ControlRERRelative Error Ratio (Radiochemistry)RLReporting Limit or Requested Limit (Radiochemistry)RPDRelative Percent Difference, a measure of the relative difference between two pointsTEFToxicity Equivalent Factor (Dioxin)TEQToxicity Equivalent Quotient (Dioxin)	MQL	Method Quantitation Limit	13
PRESPresumptiveQCQuality ControlRERRelative Error Ratio (Radiochemistry)RLReporting Limit or Requested Limit (Radiochemistry)RPDRelative Percent Difference, a measure of the relative difference between two pointsTEFToxicity Equivalent Factor (Dioxin)TEQToxicity Equivalent Quotient (Dioxin)	NC	Not Calculated	
PRESPresumptiveQCQuality ControlRERRelative Error Ratio (Radiochemistry)RLReporting Limit or Requested Limit (Radiochemistry)RPDRelative Percent Difference, a measure of the relative difference between two pointsTEFToxicity Equivalent Factor (Dioxin)TEQToxicity Equivalent Quotient (Dioxin)	ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
PRESPresumptiveQCQuality ControlRERRelative Error Ratio (Radiochemistry)RLReporting Limit or Requested Limit (Radiochemistry)RPDRelative Percent Difference, a measure of the relative difference between two pointsTEFToxicity Equivalent Factor (Dioxin)TEQToxicity Equivalent Quotient (Dioxin)	NEG	Negative / Absent	
PRESPresumptiveQCQuality ControlRERRelative Error Ratio (Radiochemistry)RLReporting Limit or Requested Limit (Radiochemistry)RPDRelative Percent Difference, a measure of the relative difference between two pointsTEFToxicity Equivalent Factor (Dioxin)TEQToxicity Equivalent Quotient (Dioxin)	POS	Positive / Present	
QCQuality ControlRERRelative Error Ratio (Radiochemistry)RLReporting Limit or Requested Limit (Radiochemistry)RPDRelative Percent Difference, a measure of the relative difference between two pointsTEFToxicity Equivalent Factor (Dioxin)TEQToxicity Equivalent Quotient (Dioxin)	PQL	Practical Quantitation Limit	
RERRelative Error Ratio (Radiochemistry)RLReporting Limit or Requested Limit (Radiochemistry)RPDRelative Percent Difference, a measure of the relative difference between two pointsTEFToxicity Equivalent Factor (Dioxin)TEQToxicity Equivalent Quotient (Dioxin)	PRES	Presumptive	
RL Reporting Limit or Requested Limit (Radiochemistry) RPD Relative Percent Difference, a measure of the relative difference between two points TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)	QC	Quality Control	
RPD Relative Percent Difference, a measure of the relative difference between two points TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)	RER	Relative Error Ratio (Radiochemistry)	
TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)	RL	Reporting Limit or Requested Limit (Radiochemistry)	
TEQ Toxicity Equivalent Quotient (Dioxin)	RPD	Relative Percent Difference, a measure of the relative difference between two points	
	TEF	Toxicity Equivalent Factor (Dioxin)	
TNTC Too Numerous To Count	TEQ	Toxicity Equivalent Quotient (Dioxin)	
	TNTC	Too Numerous To Count	

Job ID: 320-64765-1

Laboratory: Eurofins TestAmerica, Sacramento

Narrative

Job Narrative 320-64765-1

Comments

No additional comments.

Receipt

The samples were received on 9/18/2020 10:20 AM; the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 1.2° C.

Receipt Exceptions

Samples C-1-CW08 (320-64765-3) and C-1-CW03 (320-64765-4) were received with discoloration.

LCMS

Method EPA 537(Mod): The first level standard from the initial calibration curve is used to evaluate the tune criteria. The instrument mass windows are set at +/- 0.5amu; therefore, detection of the analyte serves as verification that the assigned mass is within +/- 0.5amu of the true value, which meets the DoD/DOE QSM tune criterion.

Method EPA 537(Mod): Results for sample B-6-CW10 (320-64765-6) were reported from the analysis of a diluted extract due to high concentration of the target analyte in the analysis of the undiluted extract. The dilution factor was applied to the labeled internal standard area counts and these area counts were within acceptance limits

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

Method 3535: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 320-414308.

Method 3535: The following samples were orange and contained a thin layer of sediment at the bottom of the bottle prior to extraction: C-1-CW08 (320-64765-3) and C-1-CW03 (320-64765-4).

Method 3535: The following sample contained floating particulates in the sample bottle prior to extraction: B-6-CW10 (320-64765-6).

Method 3535: During the solid phase extraction process, the following samples contained non-settable particulates which clogged the solid phase extraction column: C-1-CW08 (320-64765-3), C-1-CW03 (320-64765-4) and B-6-CW10 (320-64765-6).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Detection Summary

Client Sample ID: FB-200917

No Detections.

Client Sample ID: EB-200917

No Detections.

Client Sample ID: C-1-CW08

Analyte	Result (Qualifier	RL	MDL	Unit	Dil Fac	Method	Prep Type
Perfluorobutanoic acid (PFBA)	7.6		4.2		ng/L	1	EPA 537(Mod)	Total/NA
Perfluoropentanoic acid (PFPeA)	6.1		1.7		ng/L	1	EPA 537(Mod)	Total/NA
Perfluorohexanoic acid (PFHxA)	4.6		1.7		ng/L	1	EPA 537(Mod)	Total/NA
Perfluorooctanoic acid (PFOA)	2.6		1.7		ng/L	1	EPA 537(Mod)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	3.0		1.7		ng/L	1	EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	2.4		1.7		ng/L	1	EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	4.4		1.7		ng/L	1	EPA 537(Mod)	Total/NA

Client Sample ID: C-1-CW03

Analyte	Result	Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Perfluoropentanoic acid (PFPeA)	2.6		1.7	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorohexanoic acid (PFHxA)	1.9		1.7	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	3.0		1.7	ng/L	1	EPA 537(Mod)	Total/NA
Perfluoropentanesulfonic acid (PFPeS)	1.7		1.7	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	1.9		1.7	ng/L	1	EPA 537(Mod)	Total/NA

Client Sample ID: C-1-CW06

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Perfluorobutanoic acid (PFBA)	5.4	4.2	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	1.9	1.7	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	3.6	1.7	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorooctanesulfonamide (FOSA)	3.1	1.7	ng/L	1	EPA 537(Mod)	Total/NA

Client Sample ID: B-6-CW10

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac	Method	Prep Type
Perfluorobutanoic acid (PFBA)	310	41	ng/L		EPA 537(Mod)	Total/NA
Perfluoropentanoic acid (PFPeA)	670	17	ng/L	10	EPA 537(Mod)	Total/NA
Perfluorohexanoic acid (PFHxA)	670	17	ng/L	10	EPA 537(Mod)	Total/NA
Perfluoroheptanoic acid (PFHpA)	210	17	ng/L	10	EPA 537(Mod)	Total/NA
Perfluorooctanoic acid (PFOA)	170	17	ng/L	10	EPA 537(Mod)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	73	17	ng/L	10	EPA 537(Mod)	Total/NA
Perfluoropentanesulfonic acid (PFPeS)	120	17	ng/L	10	EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	390	17	ng/L	10	EPA 537(Mod)	Total/NA

This Detection Summary does not include radiochemical test results.

5

Lab Sample ID: 320-64765-5

Lab Sample ID: 320-64765-6

Lab Sample ID: 320-64765-1

Job ID: 320-64765-1

Lab Sample ID: 320-64765-2

Lab Sample ID: 320-64765-3

Lab Sample ID: 320-64765-4

Client: Geosyntec Consultants, Inc. Project/Site: PFAS - Hollywood Burbank Airport

Client Sample ID: FB-200917 Date Collected: 09/17/20 07:35 Date Received: 09/18/20 10:20

Joh	ıD	320-64765-
300	ID.	320-04703-

4765-1 765-1 : Water

5

Lab	Sample	ID:	320-64765-1
	-		Matrix: Water

Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	ND		4.1		ng/L		09/21/20 13:10	09/24/20 16:12	1
Perfluoropentanoic acid (PFPeA)	ND		1.6		ng/L		09/21/20 13:10	09/24/20 16:12	1
Perfluorohexanoic acid (PFHxA)	ND		1.6		ng/L		09/21/20 13:10	09/24/20 16:12	1
Perfluoroheptanoic acid (PFHpA)	ND		1.6		ng/L		09/21/20 13:10	09/24/20 16:12	1
Perfluorooctanoic acid (PFOA)	ND		1.6		ng/L		09/21/20 13:10	09/24/20 16:12	1
Perfluorononanoic acid (PFNA)	ND		1.6		ng/L		09/21/20 13:10	09/24/20 16:12	1
Perfluorodecanoic acid (PFDA)	ND		1.6		ng/L		09/21/20 13:10	09/24/20 16:12	1
Perfluoroundecanoic acid (PFUnA)	ND		1.6		ng/L			09/24/20 16:12	1
Perfluorododecanoic acid (PFDoA)	ND		1.6		ng/L			09/24/20 16:12	1
Perfluorotridecanoic acid (PFTriA)	ND		1.6		ng/L			09/24/20 16:12	
Perfluorotetradecanoic acid (PFTeA)	ND		1.6		ng/L			09/24/20 16:12	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.6		ng/L			09/24/20 16:12	1
Perfluoropentanesulfonic acid								09/24/20 16:12	
PFPeS)	ND		1.6		ng/L				1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.6		ng/L			09/24/20 16:12	1
^p erfluoroheptanesulfonic Acid PFHpS)	ND		1.6		ng/L		09/21/20 13:10	09/24/20 16:12	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.6		ng/L		09/21/20 13:10	09/24/20 16:12	1
Perfluorodecanesulfonic acid (PFDS)	ND		1.6		ng/L		09/21/20 13:10	09/24/20 16:12	1
Perfluorooctanesulfonamide (FOSA)	ND		1.6		ng/L		09/21/20 13:10	09/24/20 16:12	1
I-methylperfluorooctanesulfonamidoa etic acid (NMeFOSAA)	ND		4.1		ng/L		09/21/20 13:10	09/24/20 16:12	1
I-ethylperfluorooctanesulfonamidoac tic acid (NEtFOSAA)	ND		4.1		ng/L		09/21/20 13:10	09/24/20 16:12	
:2 FTS	ND		1.6		ng/L		09/21/20 13:10	09/24/20 16:12	-
:2 FTS	ND		4.1		ng/L		09/21/20 13:10	09/24/20 16:12	
2 FTS	ND		1.6		ng/L		09/21/20 13:10	09/24/20 16:12	
sotope Dilution		Qualifier	Limits				Prepared	Analyzed	Dil Fa
3C4 PFBA	99		50 - 150				09/21/20 13:10	09/24/20 16:12	
3C5 PFPeA	103		50 - 150				09/21/20 13:10	09/24/20 16:12	·
3C2 PFHxA	101		50 - 150				09/21/20 13:10	09/24/20 16:12	1
3C4 PFHpA	108		50 - 150				09/21/20 13:10	09/24/20 16:12	
3C4 PFOA	99		50 - 150				09/21/20 13:10	09/24/20 16:12	1
3C5 PFNA	108		50 - 150				09/21/20 13:10	09/24/20 16:12	-
3C2 PFDA	108		50 - 150					09/24/20 16:12	
3C2 PFUnA	114		50 - 150					09/24/20 16:12	1
3C2 PFDoA	105		50 - 150					09/24/20 16:12	-
3C2 PFTeDA	99		50 - 150					09/24/20 16:12	
3C3 PFBS	99 107		50 - 150 50 - 150					09/24/20 16:12	4
802 PFHxS	107		50 - 150 50 - 150					09/24/20 10:12	
								09/24/20 16:12	ا • • • • • • •
3C4 PFOS	104		50 - 150 50 - 150						Ĩ
3C8 FOSA	97		50 - 150					09/24/20 16:12	
3-NMeFOSAA	97		50 - 150					09/24/20 16:12	
5-NEtFOSAA	100		50 - 150					09/24/20 16:12	
12-6:2 FTS	111		50 - 150					09/24/20 16:12	
12-8:2 FTS	109		50 - 150				09/21/20 13:10	09/24/20 16:12	1
M2-4:2 FTS	109		50 - 150				09/21/20 13:10	09/24/20 16:12	1

Client: Geosyntec Consultants, Inc. Project/Site: PFAS - Hollywood Burbank Airport

Client Sample ID: EB-200917 Date Collected: 09/17/20 07:36 Date Received: 09/18/20 10:20

Job	١D·	320-64765-1
000	ID.	020-04/00-1

Lab Sample ID: 320-64765-2

Matrix: Water

5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	ND		4.3		ng/L		09/21/20 13:10	09/24/20 16:21	
Perfluoropentanoic acid (PFPeA)	ND		1.7		ng/L		09/21/20 13:10	09/24/20 16:21	
Perfluorohexanoic acid (PFHxA)	ND		1.7		ng/L		09/21/20 13:10	09/24/20 16:21	
Perfluoroheptanoic acid (PFHpA)	ND		1.7		ng/L		09/21/20 13:10	09/24/20 16:21	
Perfluorooctanoic acid (PFOA)	ND		1.7		ng/L		09/21/20 13:10	09/24/20 16:21	
Perfluorononanoic acid (PFNA)	ND		1.7		ng/L		09/21/20 13:10	09/24/20 16:21	
Perfluorodecanoic acid (PFDA)	ND		1.7		ng/L		09/21/20 13:10	09/24/20 16:21	
Perfluoroundecanoic acid (PFUnA)	ND		1.7		ng/L		09/21/20 13:10	09/24/20 16:21	
Perfluorododecanoic acid (PFDoA)	ND		1.7		ng/L		09/21/20 13:10	09/24/20 16:21	
Perfluorotridecanoic acid (PFTriA)	ND		1.7		ng/L			09/24/20 16:21	
Perfluorotetradecanoic acid (PFTeA)	ND		1.7		ng/L		09/21/20 13:10	09/24/20 16:21	
Perfluorobutanesulfonic acid (PFBS)	ND		1.7		ng/L			09/24/20 16:21	
Perfluoropentanesulfonic acid PFPeS)	ND		1.7		ng/L			09/24/20 16:21	
Perfluorohexanesulfonic acid (PFHxS)	ND		1.7		ng/L		09/21/20 13:10	09/24/20 16:21	
Perfluoroheptanesulfonic Acid PFHpS)	ND		1.7		ng/L		09/21/20 13:10	09/24/20 16:21	
Perfluorooctanesulfonic acid (PFOS)	ND		1.7		ng/L		09/21/20 13:10	09/24/20 16:21	
Perfluorodecanesulfonic acid (PFDS)	ND		1.7		ng/L		09/21/20 13:10	09/24/20 16:21	
Perfluorooctanesulfonamide (FOSA)	ND		1.7		ng/L		09/21/20 13:10	09/24/20 16:21	
N-methylperfluorooctanesulfonamidoa xetic acid (NMeFOSAA)	ND		4.3		ng/L		09/21/20 13:10	09/24/20 16:21	
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.3		ng/L		09/21/20 13:10	09/24/20 16:21	
1:2 FTS	ND		1.7		ng/L		09/21/20 13:10	09/24/20 16:21	
6:2 FTS	ND		4.3		ng/L		09/21/20 13:10	09/24/20 16:21	
3:2 FTS	ND		1.7		ng/L		09/21/20 13:10	09/24/20 16:21	
sotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
3C4 PFBA	95		50 - 150				09/21/20 13:10	09/24/20 16:21	
3C5 PFPeA	98		50 - 150				09/21/20 13:10	09/24/20 16:21	
3C2 PFHxA	95		50 - 150				09/21/20 13:10	09/24/20 16:21	
I3C4 PFHpA	96		50 - 150				09/21/20 13:10	09/24/20 16:21	
13C4 PFOA	94		50 - 150				09/21/20 13:10	09/24/20 16:21	
13C5 PFNA	101		50 - 150				09/21/20 13:10	09/24/20 16:21	
13C2 PFDA	105		50 - 150				09/21/20 13:10	09/24/20 16:21	
13C2 PFUnA	106		50 - 150				09/21/20 13:10	09/24/20 16:21	
13C2 PFDoA	104		50 - 150				09/21/20 13:10	09/24/20 16:21	
I3C2 PFTeDA	101		50 - 150					09/24/20 16:21	
13C3 PFBS	99		50 - 150					09/24/20 16:21	
802 PFHxS	99		50 - 150					09/24/20 16:21	
3C4 PFOS	96		50 - 150					09/24/20 16:21	
3C8 FOSA	95		50 - 150					09/24/20 16:21	
I3-NMeFOSAA	112		50 - 150 50 - 150					09/24/20 16:21	
IS-NMEFOSAA IS-NEtFOSAA	112		50 - 150 50 - 150					09/24/20 16:21	
			50 - 150 50 - 150					09/24/20 16:21	
M2-6:2 FTS M2-8:2 FTS	105 114							09/24/20 16:21	
M2-8:2 FTS	114		50 - 150				03/21/20 13.10	03/24/20 10.21	

Client: Geosyntec Consultants, Inc. Project/Site: PFAS - Hollywood Burbank Airport

Client Sample ID: C-1-CW08 Date Collected: 09/17/20 08:29 Date Received: 09/18/20 10:20

Job	١D·	320-64765-1
000	ID.	020-04/00-1

Matrix: Water

Lab Sample ID: 320-64765-3

nalyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
erfluorobutanoic acid (PFBA)	7.6		4.2		ng/L		09/21/20 13:10	09/24/20 16:31	1
Perfluoropentanoic acid (PFPeA)	6.1		1.7		ng/L		09/21/20 13:10	09/24/20 16:31	1
Perfluorohexanoic acid (PFHxA)	4.6		1.7		ng/L		09/21/20 13:10	09/24/20 16:31	1
erfluoroheptanoic acid (PFHpA)	ND		1.7		ng/L		09/21/20 13:10	09/24/20 16:31	1
erfluorooctanoic acid (PFOA)	2.6		1.7		ng/L		09/21/20 13:10	09/24/20 16:31	1
erfluorononanoic acid (PFNA)	ND		1.7		ng/L		09/21/20 13:10	09/24/20 16:31	1
Perfluorodecanoic acid (PFDA)	ND		1.7		ng/L		09/21/20 13:10	09/24/20 16:31	1
erfluoroundecanoic acid (PFUnA)	ND		1.7		ng/L		09/21/20 13:10	09/24/20 16:31	1
erfluorododecanoic acid (PFDoA)	ND		1.7		ng/L		09/21/20 13:10	09/24/20 16:31	1
erfluorotridecanoic acid (PFTriA)	ND		1.7		ng/L		09/21/20 13:10	09/24/20 16:31	1
erfluorotetradecanoic acid (PFTeA)	ND		1.7		ng/L		09/21/20 13:10	09/24/20 16:31	1
erfluorobutanesulfonic acid PFBS)	3.0		1.7		ng/L		09/21/20 13:10	09/24/20 16:31	1
erfluoropentanesulfonic acid PFPeS)	ND		1.7		ng/L		09/21/20 13:10	09/24/20 16:31	1
erfluorohexanesulfonic acid PFHxS)	2.4		1.7		ng/L		09/21/20 13:10	09/24/20 16:31	1
erfluoroheptanesulfonic Acid ?FHpS)	ND		1.7		ng/L		09/21/20 13:10	09/24/20 16:31	1
erfluorooctanesulfonic acid PFOS)	4.4		1.7		ng/L		09/21/20 13:10	09/24/20 16:31	1
erfluorodecanesulfonic acid (PFDS)	ND		1.7		ng/L		09/21/20 13:10	09/24/20 16:31	1
rfluorooctanesulfonamide (FOSA)	ND		1.7		ng/L		09/21/20 13:10	09/24/20 16:31	1
methylperfluorooctanesulfonamidoa tic acid (NMeFOSAA)	ND		4.2		ng/L		09/21/20 13:10	09/24/20 16:31	1
-ethylperfluorooctanesulfonamidoac ic acid (NEtFOSAA)	ND		4.2		ng/L		09/21/20 13:10	09/24/20 16:31	1
2 FTS	ND		1.7		ng/L		09/21/20 13:10	09/24/20 16:31	1
:2 FTS	ND		4.2		ng/L		09/21/20 13:10	09/24/20 16:31	1
2 FTS	ND		1.7		ng/L		09/21/20 13:10	09/24/20 16:31	1
otope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
3C4 PFBA	67		50 - 150				<u> </u>	09/24/20 16:31	1
3C5 PFPeA	72		50 - 150				09/21/20 13:10	09/24/20 16:31	1
3C2 PFHxA	71		50 - 150				09/21/20 13:10	09/24/20 16:31	1
3C4 PFHpA	73		50 - 150				09/21/20 13:10	09/24/20 16:31	
3C4 PFOA	70		50 - 150					09/24/20 16:31	1
3C5 PFNA	74		50 - 150					09/24/20 16:31	1
3C2 PFDA	76		50 - 150					09/24/20 16:31	
3C2 PFUnA	75		50 - 150					09/24/20 16:31	1
3C2 PFDoA	76		50 - 150					09/24/20 16:31	1
3C2 PFTeDA	57		50 - 150 50 - 150					09/24/20 16:31	
	57 74							09/24/20 16:31	1
BC3 PFBS			50 - 150						•
BO2 PFHxS	74		50 - 150					09/24/20 16:31	1
3C4 PFOS	68		50 - 150					09/24/20 16:31	1
3C8 FOSA	69		50 - 150					09/24/20 16:31	1
3-NMeFOSAA	65		50 - 150					09/24/20 16:31	1
5-NEtFOSAA	71		50 - 150					09/24/20 16:31	1
12-6:2 FTS	75		50 - 150					09/24/20 16:31	1
12-8:2 FTS	77		50 - 150				09/21/20 13:10	09/24/20 16:31	1

RL

4.1

1.7

1.7

1.7

1.7

17

MDL Unit

ng/L

ng/L

ng/L

ng/L

ng/L

ng/L

Client: Geosyntec Consultants, Inc. Project/Site: PFAS - Hollywood Burbank Airport

Method: EPA 537(Mod) - PFAS for QSM 5.1, Table B-15

Result Qualifier

ND

2.6

1.9

ND

ND

ND

Client Sample ID: C-1-CW03 Date Collected: 09/17/20 10:21 Date Received: 09/18/20 10:20

Perfluorobutanoic acid (PFBA)

Perfluoropentanoic acid (PFPeA)

Perfluorohexanoic acid (PFHxA)

Perfluoroheptanoic acid (PFHpA)

Perfluorooctanoic acid (PFOA)

Perfluorononanoic acid (PFNA)

Analyte

Job	ıD	320-64765-1
000	ID.	320-04/03-1

D

		Lab Sample ID: 320-64765-4 Matrix: Water								
Ę	Dil Fac	Analyzed	Prepared	D						
	1	09/24/20 16:40	09/21/20 13:10							
6	1	09/24/20 16:40	09/21/20 13:10							
	1	09/24/20 16:40	09/21/20 13:10							
	1	09/24/20 16:40	09/21/20 13:10							
	1	09/24/20 16:40	09/21/20 13:10							
s	1	09/24/20 16:40	09/21/20 13:10							
	1	09/24/20 16:40	09/21/20 13:10							
	1	09/24/20 16:40	09/21/20 13:10							

	ND	1.7	iig/L	03/21/20 13.10	03/24/20 10.40		
Perfluorodecanoic acid (PFDA)	ND	1.7	ng/L	09/21/20 13:10	09/24/20 16:40	1	
Perfluoroundecanoic acid (PFUnA)	ND	1.7	ng/L	09/21/20 13:10	09/24/20 16:40	1	Q
Perfluorododecanoic acid (PFDoA)	ND	1.7	ng/L	09/21/20 13:10	09/24/20 16:40	1	
Perfluorotridecanoic acid (PFTriA)	ND	1.7	ng/L	09/21/20 13:10	09/24/20 16:40	1	
Perfluorotetradecanoic acid (PFTeA)	ND	1.7	ng/L	09/21/20 13:10	09/24/20 16:40	1	
Perfluorobutanesulfonic acid (PFBS)	3.0	1.7	ng/L	09/21/20 13:10	09/24/20 16:40	1	
Perfluoropentanesulfonic acid (PFPeS)	1.7	1.7	ng/L	09/21/20 13:10	09/24/20 16:40	1	
Perfluorohexanesulfonic acid (PFHxS)	ND	1.7	ng/L	09/21/20 13:10	09/24/20 16:40	1	
Perfluoroheptanesulfonic Acid (PFHpS)	ND	1.7	ng/L	09/21/20 13:10	09/24/20 16:40	1	13
Perfluorooctanesulfonic acid (PFOS)	1.9	1.7	ng/L	09/21/20 13:10	09/24/20 16:40	1	
Perfluorodecanesulfonic acid (PFDS)	ND	1.7	ng/L	09/21/20 13:10	09/24/20 16:40	1	
Perfluorooctanesulfonamide (FOSA)	ND	1.7	ng/L	09/21/20 13:10	09/24/20 16:40	1	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND	4.1	ng/L	09/21/20 13:10	09/24/20 16:40	1	
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND	4.1	ng/L	09/21/20 13:10	09/24/20 16:40	1	
4:2 FTS	ND	1.7	ng/L	09/21/20 13:10	09/24/20 16:40	1	
6:2 FTS	ND	4.1	ng/L	09/21/20 13:10	09/24/20 16:40	1	
8:2 FTS	ND	1.7	ng/L	09/21/20 13:10	09/24/20 16:40	1	
Isotope Dilution	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac	
13C4 PFBA	66	50 - 150		09/21/20 13:10	09/24/20 16:40	1	
13C5 PFPeA	67	50 - 150		09/21/20 13:10	09/24/20 16:40	1	
13C2 PFHxA	67	50 - 150		09/21/20 13:10	09/24/20 16:40	1	
13C4 PFHpA	70	50 - 150		09/21/20 13:10	09/24/20 16:40	1	
13C4 PFOA	67	50 - 150		09/21/20 13:10	09/24/20 16:40	1	
13C5 PFNA	71	50 - 150		09/21/20 13:10	09/24/20 16:40	1	
13C2 PFDA	71	50 - 150		09/21/20 13:10	09/24/20 16:40	1	
13C2 PFUnA	70	50 - 150		09/21/20 13:10	09/24/20 16:40	1	
13C2 PFDoA	67	50 - 150		09/21/20 13:10	09/24/20 16:40	1	
13C2 PFTeDA							
1202 0500	64	50 - 150		09/21/20 13:10	09/24/20 16:40	1	
13C3 PFBS	64 68				09/24/20 16:40 09/24/20 16:40	1 1	
1802 PFHxS		50 - 150		09/21/20 13:10	09/24/20 16:40		
	68	50 - 150 50 - 150		09/21/20 13:10 09/21/20 13:10		1	
18O2 PFHxS	68 69	50 - 150 50 - 150 50 - 150		09/21/20 13:10 09/21/20 13:10 09/21/20 13:10	09/24/20 16:40 09/24/20 16:40	1 1	
1802 PFHxS 13C4 PFOS	68 69 67	50 - 150 50 - 150 50 - 150 50 - 150 50 - 150		09/21/20 13:10 09/21/20 13:10 09/21/20 13:10 09/21/20 13:10	09/24/20 16:40 09/24/20 16:40 09/24/20 16:40	1 1 1	
1802 PFHxS 13C4 PFOS 13C8 FOSA	68 69 67 67	50 - 150 50 - 150 50 - 150 50 - 150 50 - 150		09/21/20 13:10 09/21/20 13:10 09/21/20 13:10 09/21/20 13:10 09/21/20 13:10	09/24/20 16:40 09/24/20 16:40 09/24/20 16:40 09/24/20 16:40 09/24/20 16:40	1 1 1 1	
1802 PFHxS 13C4 PFOS 13C8 FOSA d3-NMeFOSAA d5-NEtFOSAA	68 69 67 67 64 64	50 - 150 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150		09/21/20 13:10 09/21/20 13:10 09/21/20 13:10 09/21/20 13:10 09/21/20 13:10 09/21/20 13:10	09/24/20 16:40 09/24/20 16:40 09/24/20 16:40 09/24/20 16:40 09/24/20 16:40 09/24/20 16:40	1 1 1 1 1	
1802 PFHxS 13C4 PFOS 13C8 FOSA d3-NMeFOSAA d5-NEtFOSAA M2-6:2 FTS	68 69 67 67 64 64 69	50 - 150 50 - 150		09/21/20 13:10 09/21/20 13:10 09/21/20 13:10 09/21/20 13:10 09/21/20 13:10 09/21/20 13:10 09/21/20 13:10	09/24/20 16:40 09/24/20 16:40 09/24/20 16:40 09/24/20 16:40 09/24/20 16:40 09/24/20 16:40	1 1 1 1 1 1	
1802 PFHxS 13C4 PFOS 13C8 FOSA d3-NMeFOSAA d5-NEtFOSAA	68 69 67 67 64 64	50 - 150 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150		09/21/20 13:10 09/21/20 13:10 09/21/20 13:10 09/21/20 13:10 09/21/20 13:10 09/21/20 13:10 09/21/20 13:10 09/21/20 13:10	09/24/20 16:40 09/24/20 16:40 09/24/20 16:40 09/24/20 16:40 09/24/20 16:40 09/24/20 16:40	1 1 1 1 1 1 1	

Client: Geosyntec Consultants, Inc. Project/Site: PFAS - Hollywood Burbank Airport

Client Sample ID: C-1-CW06 Date Collected: 09/17/20 11:41 Date Received: 09/18/20 10:20

Job	ID:	320-64765-1	
000	·D.	020 04100 1	

Lab Sample	ID:	320-64765-5
		Matrix: Water

Analyte	Result	Qualifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	5.4	4.2	ng/L		09/21/20 13:10	09/24/20 16:49	1
Perfluoropentanoic acid (PFPeA)	ND	1.7	ng/L		09/21/20 13:10	09/24/20 16:49	1
Perfluorohexanoic acid (PFHxA)	ND	1.7	ng/L		09/21/20 13:10	09/24/20 16:49	1
Perfluoroheptanoic acid (PFHpA)	ND	1.7	ng/L		09/21/20 13:10	09/24/20 16:49	1
Perfluorooctanoic acid (PFOA)	ND	1.7	ng/L		09/21/20 13:10	09/24/20 16:49	1
Perfluorononanoic acid (PFNA)	ND	1.7	ng/L		09/21/20 13:10	09/24/20 16:49	1
Perfluorodecanoic acid (PFDA)	ND	1.7	ng/L		09/21/20 13:10	09/24/20 16:49	1
Perfluoroundecanoic acid (PFUnA)	ND	1.7	ng/L		09/21/20 13:10	09/24/20 16:49	1
Perfluorododecanoic acid (PFDoA)	ND	1.7	ng/L		09/21/20 13:10	09/24/20 16:49	1
Perfluorotridecanoic acid (PFTriA)	ND	1.7	ng/L		09/21/20 13:10	09/24/20 16:49	1
Perfluorotetradecanoic acid (PFTeA)	ND	1.7	ng/L		09/21/20 13:10	09/24/20 16:49	1
Perfluorobutanesulfonic acid (PFBS)	1.9	1.7	ng/L		09/21/20 13:10	09/24/20 16:49	1
Perfluoropentanesulfonic acid (PFPeS)	ND	1.7	ng/L		09/21/20 13:10	09/24/20 16:49	1
Perfluorohexanesulfonic acid (PFHxS)	3.6	1.7	ng/L		09/21/20 13:10	09/24/20 16:49	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND	1.7	ng/L		09/21/20 13:10	09/24/20 16:49	1
Perfluorooctanesulfonic acid (PFOS)	ND	1.7	ng/L		09/21/20 13:10	09/24/20 16:49	1
Perfluorodecanesulfonic acid (PFDS)	ND	1.7	ng/L		09/21/20 13:10	09/24/20 16:49	1
Perfluorooctanesulfonamide FOSA)	3.1	1.7	ng/L		09/21/20 13:10	09/24/20 16:49	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND	4.2	ng/L		09/21/20 13:10	09/24/20 16:49	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND	4.2	ng/L			09/24/20 16:49	1
4:2 FTS	ND	1.7	ng/L		09/21/20 13:10	09/24/20 16:49	1
3:2 FTS	ND	4.2	ng/L		09/21/20 13:10	09/24/20 16:49	1
3:2 FTS	ND	1.7	ng/L		09/21/20 13:10	09/24/20 16:49	1
sotope Dilution	%Recovery	Qualifier Limits			Prepared	Analyzed	Dil Fac
I3C4 PFBA	91	50 - 150			09/21/20 13:10	09/24/20 16:49	1
13C5 PFPeA	96	50 - 150			09/21/20 13:10	09/24/20 16:49	1
I3C2 PFHxA	94	50 - 150			09/21/20 13:10	09/24/20 16:49	1
13C4 PFHpA	98	50 - 150			09/21/20 13:10	09/24/20 16:49	1
I3C4 PFOA	91	50 - 150			09/21/20 13:10	09/24/20 16:49	1
I3C5 PFNA	97	50 - 150			09/21/20 13:10	09/24/20 16:49	1
3C2 PFDA	97	50 - 150			09/21/20 13:10	09/24/20 16:49	1
3C2 PFUnA	99	50 - 150			09/21/20 13:10	09/24/20 16:49	1
3C2 PFDoA	87	50 - 150			09/21/20 13:10	09/24/20 16:49	1
3C2 PFTeDA	74	50 - 150			09/21/20 13:10	09/24/20 16:49	1
3C3 PFBS	94	50 - 150			09/21/20 13:10	09/24/20 16:49	-
802 PFHxS	97	50 - 150			09/21/20 13:10	09/24/20 16:49	-
3C4 PFOS	88	50 - 150				09/24/20 16:49	
3C8 FOSA	90	50 - 150				09/24/20 16:49	1
I3-NMeFOSAA	78	50 - 150				09/24/20 16:49	
I5-NEtFOSAA	79	50 - 150				09/24/20 16:49	
M2-6:2 FTS	90	50 - 150 50 - 150				09/24/20 16:49	1
M2-8:2 FTS	94	50 - 150 50 - 150				09/24/20 16:49	1
	34	00 - 100			00/21/20 10.10	UULT/LU IU.TJ	1

Client: Geosyntec Consultants, Inc. Project/Site: PFAS - Hollywood Burbank Airport

Client Sample ID: B-6-CW10 Date Collected: 09/17/20 13:28 Date Received: 09/18/20 10:20

Job	١D·	320-64765-1
000	ID.	020-04/00-1

Matrix: Water

Lab Sample ID: 320-64765-6

Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	310	41		ng/L			09/24/20 16:58	10
Perfluoropentanoic acid (PFPeA)	670	17		ng/L			09/24/20 16:58	10
Perfluorohexanoic acid (PFHxA)	670	17		ng/L			09/24/20 16:58	10
Perfluoroheptanoic acid (PFHpA)	210	17		ng/L		09/21/20 13:10	09/24/20 16:58	10
Perfluorooctanoic acid (PFOA)	170	17	1	ng/L		09/21/20 13:10	09/24/20 16:58	10
Perfluorononanoic acid (PFNA)	ND	17	1	ng/L		09/21/20 13:10	09/24/20 16:58	10
Perfluorodecanoic acid (PFDA)	ND	17	I	ng/L		09/21/20 13:10	09/24/20 16:58	10
Perfluoroundecanoic acid (PFUnA)	ND	17	I	ng/L		09/21/20 13:10	09/24/20 16:58	10
Perfluorododecanoic acid (PFDoA)	ND	17	I	ng/L		09/21/20 13:10	09/24/20 16:58	10
Perfluorotridecanoic acid (PFTriA)	ND	17		ng/L		09/21/20 13:10	09/24/20 16:58	1(
Perfluorotetradecanoic acid (PFTeA)	ND	17	I	ng/L		09/21/20 13:10	09/24/20 16:58	10
Perfluorobutanesulfonic acid (PFBS)	73	17	I	ng/L		09/21/20 13:10	09/24/20 16:58	10
Perfluoropentanesulfonic acid (PFPeS)	120	17	I	ng/L		09/21/20 13:10	09/24/20 16:58	10
Perfluorohexanesulfonic acid (PFHxS)	390	17	I	ng/L			09/24/20 16:58	10
Perfluoroheptanesulfonic Acid (PFHpS)	ND	17		ng/L		09/21/20 13:10	09/24/20 16:58	10
Perfluorooctanesulfonic acid (PFOS)	ND	17	1	ng/L		09/21/20 13:10	09/24/20 16:58	10
Perfluorodecanesulfonic acid (PFDS)	ND	17	1	ng/L		09/21/20 13:10	09/24/20 16:58	10
Perfluorooctanesulfonamide (FOSA)	ND	17	I	ng/L		09/21/20 13:10	09/24/20 16:58	10
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND	41	1	ng/L		09/21/20 13:10	09/24/20 16:58	1(
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND	41	I	ng/L		09/21/20 13:10	09/24/20 16:58	1(
4:2 FTS	ND	17	1	ng/L		09/21/20 13:10	09/24/20 16:58	1(
6:2 FTS	ND	41	I	ng/L		09/21/20 13:10	09/24/20 16:58	10
8:2 FTS	ND	17	I	ng/L		09/21/20 13:10	09/24/20 16:58	10
Isotope Dilution	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fa
13C4 PFBA	80	50 - 150				09/21/20 13:10	09/24/20 16:58	10
13C5 PFPeA	81	50 - 150				09/21/20 13:10	09/24/20 16:58	10
13C2 PFHxA	81	50 - 150				09/21/20 13:10	09/24/20 16:58	10
13C4 PFHpA	85	50 - 150				09/21/20 13:10	09/24/20 16:58	1(
13C4 PFOA	80	50 - 150				09/21/20 13:10	09/24/20 16:58	10
13C5 PFNA	86	50 - 150				09/21/20 13:10	09/24/20 16:58	10
13C2 PFDA	84	50 - 150				09/21/20 13:10	09/24/20 16:58	1(
13C2 PFUnA	82	50 - 150				09/21/20 13:10	09/24/20 16:58	10
13C2 PFDoA	81	50 - 150				09/21/20 13:10	09/24/20 16:58	10
13C2 PFTeDA	80	50 - 150					09/24/20 16:58	1(
13C3 PFBS	84	50 - 150					09/24/20 16:58	1
1802 PFHxS	84	50 - 150					09/24/20 16:58	1
13C4 PFOS	79	50 - 150					09/24/20 16:58	1
13C8 FOSA	79	50 - 150					09/24/20 16:58	1
13-NMeFOSAA	78	50 - 150					09/24/20 16:58	1
d5-NEtFOSAA	80	50 - 150 50 - 150					09/24/20 16:58	1
M2-6:2 FTS	83	50 - 150 50 - 150					09/24/20 16:58	1
M2-0.2 FTS M2-8:2 FTS	83 86	50 - 150 50 - 150					09/24/20 16:58	10
M2-0.2 FTS M2-4:2 FTS	83	50 - 150 50 - 150					09/24/20 16:58	10

Client: Geosyntec Consultants, Inc. Project/Site: PFAS - Hollywood Burbank Airport

Method: EPA 537(Mod) - PFAS for QSM 5.1, Table B-15 Matrix: Water

			Perce	ent Isotope	Dilution Re	covery (Ac	ceptance L	imits)	
		PFBA	PFPeA	PFHxA	C4PFHA	PFOA	PFNA	PFDA	PFUnA
Lab Sample ID	Client Sample ID	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)
320-64765-1	FB-200917	99	103	101	108	99	108	108	114
320-64765-2	EB-200917	95	98	95	96	94	101	105	106
320-64765-3	C-1-CW08	67	72	71	73	70	74	76	75
320-64765-4	C-1-CW03	66	67	67	70	67	71	71	70
320-64765-5	C-1-CW06	91	96	94	98	91	97	97	99
320-64765-6	B-6-CW10	80	81	81	85	80	86	84	82
LCS 320-414308/2-A	Lab Control Sample	103	110	109	112	104	112	110	110
LCSD 320-414308/3-A	Lab Control Sample Dup	93	97	96	99	93	101	102	107
MB 320-414308/1-A	Method Blank	91	95	92	97	90	99	101	100
			Perce	ent Isotope	Dilution Re	covery (Ac	ceptance L	imits)	
		PFDoA	PFTDA	C3PFBS	PFHxS	PFOS	PFOSA	d3NMFOS	d5NEFOS
Lab Sample ID	Client Sample ID	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)
320-64765-1	FB-200917	105	99	107	106	104	97	97	100
320-64765-2	EB-200917	104	101	99	99	96	95	112	110
320-64765-3	C-1-CW08	74	57	74	74	68	69	65	71
320-64765-4	C-1-CW03	67	64	68	69	67	67	64	64
320-64765-5	C-1-CW06	87	74	94	97	88	90	78	79
320-64765-6	B-6-CW10	81	80	84	84	79	79	78	80
LCS 320-414308/2-A	Lab Control Sample	112	102	106	108	104	102	104	100
LCSD 320-414308/3-A	Lab Control Sample Dup	105	100	102	100	95	88	93	95
MB 320-414308/1-A	Method Blank	100	93	93	95	87	88	88	90
			Perce	ent Isotope	Dilution Re	covery (Ac	ceptance L	imits)	
		M262FTS	M282FTS	M242FTS					
Lab Sample ID	Client Sample ID	(50-150)	(50-150)	(50-150)					
320-64765-1	FB-200917	111	109	109					
320-64765-2	EB-200917	105	114	99					
320-64765-3	C-1-CW08	75	77	79					
320-64765-4	C-1-CW03	69	71	71					
320-64765-5	C-1-CW06	90	94	102					
320-64765-6	B-6-CW10	83	86	83					
LCS 320-414308/2-A	Lab Control Sample	110	109	114					
LCSD 320-414308/3-A	Lab Control Sample Dup	98	102	103					
MB 320-414308/1-A	Method Blank	95	97	92					

Surrogate Legend

PFBA = 13C4 PFBA PFPeA = 13C5 PFPeA PFHxA = 13C2 PFHxA C4PFHA = 13C4 PFHpA PFOA = 13C4 PFOA PFDA = 13C5 PFNA PFDA = 13C2 PFDA PFUnA = 13C2 PFDA PFUnA = 13C2 PFDOA PFTDA = 13C2 PFTeDA C3PFBS = 13C2 PFTeDA C3PFBS = 13C3 PFBS PFHxS = 18O2 PFHxS PFOS = 13C4 PFOS PFOSA = 13C8 FOSA Job ID: 320-64765-1

5

Isotope Dilution Summary

Client: Geosyntec Consultants, Inc. Project/Site: PFAS - Hollywood Burbank Airport d3NMFOS = d3-NMeFOSAA d5NEFOS = d5-NEtFOSAA M262FTS = M2-6:2 FTS M282FTS = M2-8:2 FTS M242FTS = M2-4:2 FTS

Prep Type: Total/NA

Prep Batch: 414308

5

8

Client Sample ID: Method Blank

Method: EPA 537(Mod) - PFAS for QSM 5.1, Table B-15

Lab Sample ID: MB 320-414308/1-A Matrix: Water Analysis Batch: 415666

	МВ	MB						
Analyte	Result	Qualifier	RL	MDL U	Jnit D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	ND		5.0	n	ng/L	09/21/20 13:10	09/24/20 15:45	1
Perfluoropentanoic acid (PFPeA)	ND		2.0	ng	ig/L	09/21/20 13:10	09/24/20 15:45	1
Perfluorohexanoic acid (PFHxA)	ND		2.0	ng	ig/L	09/21/20 13:10	09/24/20 15:45	1
Perfluoroheptanoic acid (PFHpA)	ND		2.0	n	ig/L	09/21/20 13:10	09/24/20 15:45	1
Perfluorooctanoic acid (PFOA)	ND		2.0	n	ig/L	09/21/20 13:10	09/24/20 15:45	1
Perfluorononanoic acid (PFNA)	ND		2.0	n	ig/L	09/21/20 13:10	09/24/20 15:45	1
Perfluorodecanoic acid (PFDA)	ND		2.0	n	ig/L	09/21/20 13:10	09/24/20 15:45	1
Perfluoroundecanoic acid (PFUnA)	ND		2.0	ng	ig/L	09/21/20 13:10	09/24/20 15:45	1
Perfluorododecanoic acid (PFDoA)	ND		2.0	n	ig/L	09/21/20 13:10	09/24/20 15:45	1
Perfluorotridecanoic acid (PFTriA)	ND		2.0		ig/L	09/21/20 13:10	09/24/20 15:45	1
Perfluorotetradecanoic acid (PFTeA)	ND		2.0		ig/L	09/21/20 13:10	09/24/20 15:45	1
Perfluorobutanesulfonic acid (PFBS)	ND		2.0	n	ig/L	09/21/20 13:10	09/24/20 15:45	1
Perfluoropentanesulfonic acid (PFPeS)	ND		2.0	nį	ng/L	09/21/20 13:10	09/24/20 15:45	1
Perfluorohexanesulfonic acid (PFHxS)	ND		2.0	n	ig/L	09/21/20 13:10	09/24/20 15:45	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		2.0	nį	ng/L	09/21/20 13:10	09/24/20 15:45	1
Perfluorooctanesulfonic acid (PFOS)	ND		2.0	n	ng/L	09/21/20 13:10	09/24/20 15:45	1
Perfluorodecanesulfonic acid (PFDS)	ND		2.0	ng	ig/L	09/21/20 13:10	09/24/20 15:45	1
Perfluorooctanesulfonamide (FOSA)	ND		2.0	ng	ig/L	09/21/20 13:10	09/24/20 15:45	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		5.0	nį	ng/L	09/21/20 13:10	09/24/20 15:45	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		5.0	nį	ng/L	09/21/20 13:10	09/24/20 15:45	1
4:2 FTS	ND		2.0		ıg/L	09/21/20 13:10	09/24/20 15:45	1
6:2 FTS	ND		5.0		ig/L		09/24/20 15:45	1
8:2 FTS	ND		2.0	n	ig/L	09/21/20 13:10	09/24/20 15:45	1
		MB						
Isotope Dilution	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
13C4 PFBA	91		50 - 150			09/21/20 13:10	09/24/20 15:45	1
13C5 PFPeA	95		50 - 150				09/24/20 15:45	1
13C2 PFHxA	92		50 - 150				09/24/20 15:45	1
13C4 PFHpA	97		50 - 150				09/24/20 15:45	1
13C4 PFOA	90		50 - 150				09/24/20 15:45	1
13C5 PFNA	99		50 - 150				09/24/20 15:45	1
13C2 PFDA	101		50 - 150				09/24/20 15:45	1
13C2 PFUnA	100		50 - 150				09/24/20 15:45	1
13C2 PFDoA	100		50 - 150				09/24/20 15:45	1
13C2 PFTeDA	93		50 - 150				09/24/20 15:45	1
13C3 PFBS	93		50 - 150				09/24/20 15:45	1
1802 PFHxS	95		50 - 150				09/24/20 15:45	1
13C4 PFOS	87		50 - 150				09/24/20 15:45	1
13C8 FOSA	88		50 - 150				09/24/20 15:45	1
d3-NMeFOSAA	88		50 - 150				09/24/20 15:45	1
d5-NEtFOSAA	90		50 - 150				09/24/20 15:45	1
M2-6:2 FTS	95		50 - 150				09/24/20 15:45	1
M2-8:2 FTS	97		50 - 150				09/24/20 15:45	1
M2-4:2 FTS	92		50 - 150			09/21/20 13:10	09/24/20 15:45	1

QC Sample Results

Job ID: 320-64765-1

5

8

Client Sample ID: Lab Control Sample

Method: EPA 537(Mod) - PFAS for QSM 5.1, Table B-15 (Continued)

Lab Sample ID: LCS 320-414308/2-/	A
Matrix: Water	

Motrix: Motor						one			
Matrix: Water									Prep Type: Total/NA
Analysis Batch: 415666									Prep Batch: 414308
			Spike		LCS		_		%Rec.
Analyte			Added		Qualifier	Unit	D	%Rec	Limits
Perfluorobutanoic acid (PFBA)			40.0	41.8		ng/L		104	76 - 136
Perfluoropentanoic acid (PFPeA)			40.0	35.9		ng/L		90	71_131
Perfluorohexanoic acid (PFHxA)			40.0	38.4		ng/L		96	73 - 133
Perfluoroheptanoic acid (PFHpA)			40.0	37.2		ng/L		93	72 - 132
Perfluorooctanoic acid (PFOA)			40.0	40.4		ng/L		101	70 - 130
Perfluorononanoic acid (PFNA)			40.0	40.5		ng/L		101	75 - 135
Perfluorodecanoic acid (PFDA)			40.0	41.2		ng/L		103	76 - 136
Perfluoroundecanoic acid			40.0	40.2		ng/L		101	68 - 128
(PFUnA)									
Perfluorododecanoic acid			40.0	41.4		ng/L		104	71 - 131
(PFDoA)									
Perfluorotridecanoic acid			40.0	43.1		ng/L		108	71 - 131
(PFTriA)			10.0	40.0				400	70, 100
Perfluorotetradecanoic acid			40.0	42.6		ng/L		106	70 - 130
(PFTeA)			35.4	34.0		ng/l		06	67 - 127
Perfluorobutanesulfonic acid (PFBS)			55.4	54.0		ng/L		96	07 - 127
Perfluoropentanesulfonic acid			37.5	37.3		ng/L		99	66 - 126
(PFPeS)			01.0	07.0		iig/L		00	001120
Perfluorohexanesulfonic acid			36.4	33.7		ng/L		93	59 - 119
(PFHxS)						0			
Perfluoroheptanesulfonic Acid			38.1	40.7		ng/L		107	76 - 136
(PFHpS)						-			
Perfluorooctanesulfonic acid			37.1	36.9		ng/L		99	70 - 130
(PFOS)									
Perfluorodecanesulfonic acid			38.6	39.7		ng/L		103	71_131
(PFDS)									
Perfluorooctanesulfonamide			40.0	41.1		ng/L		103	73 - 133
(FOSA)			40.0	20.0		~~/l		07	76 196
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)			40.0	38.9		ng/L		97	76 - 136
N-ethylperfluorooctanesulfonami			40.0	38.7		ng/L		97	76 - 136
doacetic acid (NEtFOSAA)			40.0	00.7		iig/L		01	10-100
4:2 FTS			37.4	35.6		ng/L		95	79 - 139
6:2 FTS			37.9	35.4		ng/L		93	59 - 175
8:2 FTS			38.3	40.0		ng/L		104	75 - 135
0.2	105	LCS	0010						
Isotope Dilution	%Recovery		Limits						
13C4 PFBA	103	Quaimer	50 - 150						
13C5 PFPeA	110		50 - 150 50 - 150						
13C2 PFHxA	109		50 - 150						
13C4 PFHpA	112		50 - 150						
13C4 PFOA	104		50 - 150						
13C5 PFNA	112		50 - 150						
13C2 PFDA	110		50 - 150						
13C2 PFUnA	110		50 - 150						
13C2 PFDoA	112		50 - 150						
13C2 PFTeDA	102		50 - 150						
13C3 PFBS	106		50 - 150						
18O2 PFHxS	108		50 - 150						
13C4 PFOS	104		50 - 150						
1200 5001	400		50 450						

Eurofins TestAmerica, Sacramento

50 - 150

102

13C8 FOSA

QC Sample Results

8

Method: EPA 537(Mod) - PFAS for QSM 5.1, Table B-15 (Continued) Lab Sample ID: LCS 320-414308/2-A **Client Sample ID: Lab Control Sample** Matrix: Water Prep Type: Total/NA Analysis Batch: 415666 Prep Batch: 414308 LCS LCS Isotope Dilution %Recovery Qualifier Limits d3-NMeFOSAA 104 50 - 150 d5-NEtFOSAA 100 50 - 150 M2-6:2 FTS 50 - 150 110 M2-8:2 FTS 109 50 - 150 M2-4:2 FTS 50 - 150 114 Lab Sample ID: LCSD 320-414308/3-A **Client Sample ID: Lab Control Sample Dup Matrix: Water** Prep Type: Total/NA Prep Batch: 414308 Analysis Batch: 415666 LCSD LCSD Spike %Rec. RPD Limit Analvte Added **Result Qualifier** Unit D %Rec Limits RPD 40.0 42.5 30 Perfluorobutanoic acid (PFBA) ng/L 106 76 - 136 2 Perfluoropentanoic acid (PFPeA) 40.0 37.2 ng/L 93 71 - 131 3 30 Perfluorohexanoic acid (PFHxA) 40.0 39.0 ng/L 98 73 - 133 2 30 Perfluoroheptanoic acid (PFHpA) 40.0 38.0 95 72 - 132 2 30 ng/L Perfluorooctanoic acid (PFOA) 40.0 41.6 104 70 - 130 30 ng/L 3 Perfluorononanoic acid (PFNA) 40.0 41.0 ng/L 103 75 - 135 30 1 Perfluorodecanoic acid (PFDA) 40.0 38.8 97 76 - 136 ng/L 6 30 Perfluoroundecanoic acid 40.0 39.5 ng/L 99 68 - 128 2 30 (PFUnA) 40.0 41.2 103 71 - 131 0 Perfluorododecanoic acid ng/L 30 (PFDoA) 40.0 39.8 99 71 - 131 8 30 Perfluorotridecanoic acid ng/L (PFTriA) Perfluorotetradecanoic acid 40.0 39.7 99 70 - 130 7 30 ng/L (PFTeA) Perfluorobutanesulfonic acid 35.4 32.9 ng/L 93 67 - 127 3 30 (PFBS) Perfluoropentanesulfonic acid 37.5 37.0 ng/L 99 66 - 126 1 30 (PFPeS) 36.4 33.4 92 Perfluorohexanesulfonic acid ng/L 59 - 119 1 30 (PFHxS) Perfluoroheptanesulfonic Acid 38.1 41.4 109 76 - 136 2 30 ng/L (PFHpS) ng/L Perfluorooctanesulfonic acid 37.1 37.9 102 70 - 130 3 30 (PFOS) 38.6 39.6 ng/L 103 71 - 131 0 30 Perfluorodecanesulfonic acid (PFDS) 40.0 Perfluorooctanesulfonamide 43.1 ng/L 108 73 - 133 5 30 (FOSA) 101 76 - 136 30 N-methylperfluorooctanesulfona 40.0 40.4 Δ ng/L midoacetic acid (NMeFOSAA) 40.0 30 N-ethylperfluorooctanesulfonami 37.5 ng/L 94 76 - 136 3 doacetic acid (NEtFOSAA) 94 2 4:2 FTS 37.4 35.0 ng/L 79 - 139 30 6:2 FTS 37.9 36.5 96 30 ng/L 59 - 175 3 8:2 FTS 38.3 38.6 ng/L 101 75 - 135 4 30

	LCSD	LCSD	
Isotope Dilution	%Recovery	Qualifier	Limits
13C4 PFBA	93		50 - 150
13C5 PFPeA	97		50 - 150
13C2 PFHxA	96		50 - 150

Method: EPA 537(Mod) - PFAS for QSM 5.1, Table B-15 (Continued)

Project/Site: PFAS - Hollywood Burbank Airport

Lab Sample ID: LCSD 320 Matrix: Water Analysis Batch: 415666)-414308/3-A			Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA Prep Batch: 414308
	LCSD	LCSD		
Isotope Dilution	%Recovery	Qualifier	Limits	
13C4 PFHpA	99		50 - 150	
13C4 PFOA	93		50 - 150	
13C5 PFNA	101		50 - 150	
13C2 PFDA	102		50 - 150	
13C2 PFUnA	107		50 - 150	
13C2 PFDoA	105		50 - 150	
13C2 PFTeDA	100		50 - 150	
13C3 PFBS	102		50 - 150	
18O2 PFHxS	100		50 - 150	
13C4 PFOS	95		50 - 150	
13C8 FOSA	88		50 - 150	
d3-NMeFOSAA	93		50 - 150	
d5-NEtFOSAA	95		50 - 150	
M2-6:2 FTS	98		50 - 150	
M2-8:2 FTS	102		50 - 150	
M2-4:2 FTS	103		50 - 150	

QC Association Summary

Client: Geosyntec Consultants, Inc. Project/Site: PFAS - Hollywood Burbank Airport Job ID: 320-64765-1

LCMS

Prep Batch: 414308

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-64765-1	FB-200917	Total/NA	Water	3535	
320-64765-2	EB-200917	Total/NA	Water	3535	
320-64765-3	C-1-CW08	Total/NA	Water	3535	
320-64765-4	C-1-CW03	Total/NA	Water	3535	
320-64765-5	C-1-CW06	Total/NA	Water	3535	
320-64765-6	B-6-CW10	Total/NA	Water	3535	
MB 320-414308/1-A	Method Blank	Total/NA	Water	3535	
LCS 320-414308/2-A	Lab Control Sample	Total/NA	Water	3535	
LCSD 320-414308/3-A	Lab Control Sample Dup	Total/NA	Water	3535	
Analysis Batch: 4156	66				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-64765-1	FB-200917	Total/NA	Water	EPA 537(Mod)	414308
320-64765-2	EB-200917	Total/NA	Water	EPA 537(Mod)	414308

320-04703-1	FD-200917	TOtal/INA	Water	EFA 557 (IVIOU)	414306	
320-64765-2	EB-200917	Total/NA	Water	EPA 537(Mod)	414308	
320-64765-3	C-1-CW08	Total/NA	Water	EPA 537(Mod)	414308	
320-64765-4	C-1-CW03	Total/NA	Water	EPA 537(Mod)	414308	
320-64765-5	C-1-CW06	Total/NA	Water	EPA 537(Mod)	414308	
320-64765-6	B-6-CW10	Total/NA	Water	EPA 537(Mod)	414308	4.9
MB 320-414308/1-A	Method Blank	Total/NA	Water	EPA 537(Mod)	414308	15
LCS 320-414308/2-A	Lab Control Sample	Total/NA	Water	EPA 537(Mod)	414308	
LCSD 320-414308/3-A	Lab Control Sample Dup	Total/NA	Water	EPA 537(Mod)	414308	

Initial

Amount

306 mL

Initial

Amount

293.3 mL

Final

Amount

10.0 mL

Final

Amount

10.0 mL

Batch

Number

414308

415666

Batch

Number

414308

415666

Dil

1

Dil

1

Factor

Factor

Run

Run

Batch

Type

Prep

Client Sample ID: EB-200917

Date Collected: 09/17/20 07:36

Date Received: 09/18/20 10:20

Analysis

Batch

Туре

Prep

Analysis

Batch

3535

Batch

3535

Method

EPA 537(Mod)

Method

EPA 537(Mod)

Client Sample ID: FB-200917

Date Collected: 09/17/20 07:35

Date Received: 09/18/20 10:20

Prep Type

Total/NA

Total/NA

Prep Type

Total/NA

Total/NA

Matrix: Water

Lab

TAL SAC

TAL SAC

Matrix: Water

Lab

TAL SAC

TAL SAC

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Lab Sample ID: 320-64765-1

Analyst

Analyst

Lab Sample ID: 320-64765-3

Lab Sample ID: 320-64765-4

Lab Sample ID: 320-64765-5

Lab Sample ID: 320-64765-6

Lab Sample ID: 320-64765-2

Prepared

or Analyzed

Prepared

or Analyzed

09/21/20 13:10 LN

09/24/20 16:21 A1C

09/21/20 13:10 LN

09/24/20 16:12 A1C

2 3 4 5 6 7 8 9

Client Sample ID: C-1-CW08 Date Collected: 09/17/20 08:29 Date Received: 09/18/20 10:20

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3535			296 mL	10.0 mL	414308	09/21/20 13:10	LN	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			415666	09/24/20 16:31	A1C	TAL SAC

Client Sample ID: C-1-CW03

Date Collected: 09/17/20 10:21 Date Received: 09/18/20 10:20

Ргер Туре	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3535			301.7 mL	10.0 mL	414308	09/21/20 13:10	LN	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			415666	09/24/20 16:40	A1C	TAL SAC

Client Sample ID: C-1-CW06 Date Collected: 09/17/20 11:41 Date Received: 09/18/20 10:20

Ргер Туре	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3535			300.3 mL	10.0 mL	414308	09/21/20 13:10	LN	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			415666	09/24/20 16:49	A1C	TAL SAC

Client Sample ID: B-6-CW10 Date Collected: 09/17/20 13:28 Date Received: 09/18/20 10:20

	Batch	Batch	_	Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			301.6 mL	10.0 mL	414308	09/21/20 13:10	LN	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		10			415666	09/24/20 16:58	A1C	TAL SAC

Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

	s listed below are applicable to this report.	0		
Authority	Program	Identification Number	Expiration Date	
alifornia	State	2897	01-31-22	

Method Summary

Client: Geosyntec Consultants, Inc. Project/Site: PFAS - Hollywood Burbank Airport

5
8
9
12
13

Method	Method Description	Protocol	Laboratory
EPA 537(Mod)	PFAS for QSM 5.1, Table B-15	EPA	TAL SAC
3535	Solid-Phase Extraction (SPE)	SW846	TAL SAC

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Sample Summary

Client: Geosyntec Consultants, Inc. Project/Site: PFAS - Hollywood Burbank Airport

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Ass
320-64765-1	FB-200917	Water	09/17/20 07:35	09/18/20 10:20	
320-64765-2	EB-200917	Water	09/17/20 07:36	09/18/20 10:20	
320-64765-3	C-1-CW08	Water	09/17/20 08:29	09/18/20 10:20	
320-64765-4	C-1-CW03	Water	09/17/20 10:21	09/18/20 10:20	
320-64765-5	C-1-CW06	Water	09/17/20 11:41	09/18/20 10:20	
320-64765-6	B-6-CW10	Water	09/17/20 13:28	09/18/20 10:20	

)	Pa	Page 1 of				Lab LIMS No:	MS No:	MAIRIX CODES
	QC	Bill to/Report to (if different)	if different)						I AB US	LAR LISE ONLY	
											DW: DRINKING WATER
	Phone: 215-355-3900								#	Ascorbic/HCL Vials # HCI Vials	GW: GROUND WATER
Horsham, PA 19044-0962 Fax:	215-355-7231	Sampling Site Address (if different)	idress (if d	ifferent)	Include State				+	Na ₂ S ₂ O ₃	WW: WASTEWATER
Client/Acd: No. Geosyntec Consultants	sultants	Burbank, (CA						*	Na OH/Zn acetate pH	SO: SOIL
	Ave								#	HNO ₃ pH	SL: SLUDGE
									+ #	H2SO4 pH	OIL: OIL
-	CA 91103	P.O. No. WR2693 - 02A	693 - 02	PA	DISMA) #:			#	NaOHpH	SOL: NON SOIL SOLID
		Quote # 57005935	5935						#	Unpreserved	MI: MISCELLANEOUS
Client Contact: Mital Desai		e-mail: mdesai@geosyntec.	ii@geos)	/ntec.com	æ				#	HCI #NH4CI #MeOH	X: OTHER
PROJECT		Collection		c			er of C			# DI Matar	
FIELD ID		Date	Military A Time B	020	Matrix Code Total		IOaZ OZI	LCAB RPNU CANU		I ASI	Field pH, Temp (°C),
			-	-			s	ш			DU, UIZ, CONG. EIC.
F12-200917		0 02/E/16	0735 X		GW WW 2			2	PFAS (PFAS (23 analytes as required by CA ELAP)	
E8-700017		0	0736 X		GW Und			2	PFAS (PFAS (23 analytes as required by CA ELAP)	0
-		0	X 1280	0	GW 2			2	PFAS (PFAS (23 analytes as required by CA ELAP)	
(-1-CLUM3		10	1201 X	5	GW 2			2	PFAS (PFAS (23 analytes as required by CA ELAP)	
C-1 - (UNIDIO		1	× 141	5	GW 2			2	PFAS (PFAS (23 analytes as required by CA ELAP)	
R-C-rivio		13	328 X	6	GW 2			2	PFAS (PFAS (23 analytes as required by CA ELAP)	
				5	GW 2			2	PFAS (PFAS (23 analytes as required by CA ELAP)	
4	(19	GW 2			2	PFAS (PFAS (23 analytes as required by CA ELAP)	
	5			5	GW 2			2	PFAS (PFAS (23 analytes as required by CA ELAP)	
		>		15	GW 2			2	PFAS (PFAS (23 analytes as required by CA ELAP)	
SAMPLEDBY:(Name/Company)	TAT: STANDARD (10 DAY)	ARD (10 DAY)	8	eport Fo	Report Format: Standard		ONJ-RDD	SRP-RDD	-RDD	Field Parameters Analyzed By	ed By:
· ·	or DUE DATE	1 1	-	Standa	Standard + QC	s				Initials	Date/Time:
U- U- PPRV		Please call for pricing and availability for rush (<10 day) turnaround and for all but standard reporting format	r for rush ((<10 day) I	umaround and	for all but s	tandard rej	orting form			
					ורר רבסעו		יחר, ברר				Custodi Cosl Numb
1. A A MIPLEK	ONFIND DOFTING		1. Cal	X	eter s	Sac	09/18	12/2	(020)		
RELINGUISHED BY	DATE	TIME RECI	RECEIVED BY	0			DATE	ſE /	TIME	Rec'd Temp : Initials: Ice /	Ice Y / N Location:
RELINQUISHED BY	DATE	TIME					DATE	Щ	TIME		
RELINQUISHED BY 4.	DATE	TIME					DATE	ш	TIME		
RELINQUISHED BY	DATE	TIME 32	320-64765 Chain	Chain of	of Custody		DATE	ш	TIME	Hazardouis: ves / no	
Public particular			1 1				-			I lazaruuus. Yes / Ilu	

Login Sample Receipt Checklist

Client: Geosyntec Consultants, Inc.

Login Number: 64765 List Number: 1 Creator: Nuval, Mark-Anthony M

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 320-64765-1

List Source: Eurofins TestAmerica, Sacramento

🔅 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Sacramento 880 Riverside Parkway West Sacramento, CA 95605 Tel: (916)373-5600

Laboratory Job ID: 320-64722-1

Client Project/Site: PFAS - Hollywood Burbank Airport

For:

Geosyntec Consultants, Inc. 65 N. Raymond Avenue Suite 200 Pasadena, California 91103

Attn: Mital Desai

2. G. Typ

Authorized for release by: 9/29/2020 3:50:03 PM

Laura Turpen, Project Manager I (916)374-4414 Laura.Turpen@Eurofinset.com

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Isotope Dilution Summary	11
QC Sample Results	13
QC Association Summary	18
Lab Chronicle	19
Certification Summary	20
Method Summary	21
Sample Summary	22
Chain of Custody	23
Receipt Checklists	24

Definitions/Glossary

Client: Geosyntec Consultants, Inc. Project/Site: PFAS - Hollywood Burbank Airport

Qualifiers

	\sim		0
L	C	IVI	S
_	_		_

Qualifiers		3
LCMS		
Qualifier	Qualifier Description	4
*5	Isotope dilution analyte is outside acceptance limits.	
Glossary		5
Abbreviation	These commonly used abbreviations may or may not be present in this report.	6
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	0
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	9
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	13
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	
TNTC	Too Numerous To Count	

Job ID: 320-64722-1

Laboratory: Eurofins TestAmerica, Sacramento

Narrative

Job Narrative 320-64722-1

Comments

No additional comments.

Receipt

The samples were received on 9/17/2020 10:35 AM; the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 0.2° C.

Receipt Exceptions

The container label for the following sample did not match the information listed on the Chain-of-Custody (COC): EB-200916 (320-64722-3). One of the two bottles had no collection time noted.

LCMS Method EPA 537(Mod

Method EPA 537(Mod): The first level standard from the initial calibration curve is used to evaluate the tune criteria. The instrument mass windows are set at +/- 0.5amu; therefore, detection of the analyte serves as verification that the assigned mass is within +/- 0.5amu of the true value, which meets the DoD/DOE QSM tune criterion.

Method EPA 537(Mod): Several Isotope Dilution Analyte (IDA) recoveries associated with the following sample are below the method recommended limit: (CCB 320-413978/1). Generally, data quality is not considered affected if the IDA signal-to-noise ratio is greater than 10:1, which is achieved for all IDA in the sample(s).

Method EPA 537(Mod): Isotope Dilution Analyte (IDA) recovery for M2-6:2 FTS is above the method recommended limit for the following sample: A-1-CW03R (320-64722-5). Quantitation by isotope dilution generally precludes any adverse effect on data quality due to elevated IDA recoveries. The sample was re-analyzed with concurring results; therefore the data have been reported.

Method EPA 537(Mod): Isotope Dilution Analyte (IDA) recovery for M2-8:2 FTS is above the method recommended limit for the following samples: A-1-CW09 (320-64722-1), A-1-CW09-DUP (320-64722-2) and EB-200916 (320-64722-3). Quantitation by isotope dilution generally precludes any adverse effect on data quality due to elevated IDA recoveries. The samples were re-analyzed with concurring results; therefore the data have been reported.

Method EPA 537(Mod): The method blank for preparation batch 320-413600 contained 6:2 FTS above the reporting limit (RL). None of the samples associated with this method blank contained the target compound; therefore, re-extraction and/or re-analysis of samples were not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

Method 3535: The following samples contained a thin layer of sediment at the bottom of the bottles prior to extraction: A-1-CW03R (320-64722-5), A-1-CW03R (320-64722-5[MS]) and A-1-CW03R (320-64722-5[MSD]).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Client: Geosyntec Consultants, Inc. Project/Site: PFAS - Hollywood Burbank Airport

Client Sample ID: A-1-CW09

5

Lab Sample ID: 320-64722-1

Lab Sample ID: 320-64722-2

Lab Sample ID: 320-64722-3

Lab Sample ID: 320-64722-4

Lab Sample ID: 320-64722-5

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Perfluorobutanoic acid (PFBA)	8.9	4.6	ng/L	1	EPA 537(Mod)	Total/NA
Perfluoropentanoic acid (PFPeA)	15	1.8	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorohexanoic acid (PFHxA)	21	1.8	ng/L	1	EPA 537(Mod)	Total/NA
Perfluoroheptanoic acid (PFHpA)	2.8	1.8	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorooctanoic acid (PFOA)	2.8	1.8	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	7.1	1.8	ng/L	1	EPA 537(Mod)	Total/NA
Perfluoropentanesulfonic acid (PFPeS)	2.3	1.8	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	7.4	1.8	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	3.4	1.8	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorooctanesulfonamide (FOSA)	1.8	1.8	ng/L	1	EPA 537(Mod)	Total/NA

Client Sample ID: A-1-CW09-DUP

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac	Method	Prep Туре
Perfluorobutanoic acid (PFBA)	9.3	4.6	ng/L	1	EPA 537(Mod)	Total/NA
Perfluoropentanoic acid (PFPeA)	15	1.8	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorohexanoic acid (PFHxA)	21	1.8	ng/L	1	EPA 537(Mod)	Total/NA
Perfluoroheptanoic acid (PFHpA)	2.6	1.8	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorooctanoic acid (PFOA)	3.0	1.8	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	7.4	1.8	ng/L	1	EPA 537(Mod)	Total/NA
Perfluoropentanesulfonic acid (PFPeS)	2.2	1.8	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	5.8	1.8	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	3.3	1.8	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorooctanesulfonamide (FOSA)	2.1	1.8	ng/L	1	EPA 537(Mod)	Total/NA

Client Sample ID: EB-200916

No Detections.

Client Sample ID: FB-200916

No Detections.

Client Sample ID: A-1-CW03R

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorobutanoic acid (PFBA)	40		4.3		ng/L	1	_	EPA 537(Mod)	Total/NA
Perfluoropentanoic acid (PFPeA)	86		1.7		ng/L	1		EPA 537(Mod)	Total/NA
Perfluorohexanoic acid (PFHxA)	120		1.7		ng/L	1		EPA 537(Mod)	Total/NA
Perfluoroheptanoic acid (PFHpA)	13		1.7		ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanoic acid (PFOA)	7.4		1.7		ng/L	1		EPA 537(Mod)	Total/NA
Perfluorononanoic acid (PFNA)	1.8		1.7		ng/L	1		EPA 537(Mod)	Total/NA
Perfluorodecanoic acid (PFDA)	3.3		1.7		ng/L	1		EPA 537(Mod)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	20		1.7		ng/L	1		EPA 537(Mod)	Total/NA
Perfluoropentanesulfonic acid (PFPeS)	10		1.7		ng/L	1		EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	11		1.7		ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	15		1.7		ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanesulfonamide (FOSA)	2.4		1.7		ng/L	1		EPA 537(Mod)	Total/NA

This Detection Summary does not include radiochemical test results.

Client: Geosyntec Consultants, Inc. Project/Site: PFAS - Hollywood Burbank Airport

Client Sample ID: A-1-CW09 Date Collected: 09/16/20 09:08 Date Received: 09/17/20 10:35

Job	ID:	320-64722-1
000	·D.	020 04122 1

1 2 3 4 5 6 7 8 9 10

Lab Sample ID:	320-64722-1
	Matrix: Water

Analyte	Result Q	ualifier RL	MDL Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	8.9	4.6	ng/L		09/18/20 11:48	09/21/20 01:27	1
Perfluoropentanoic acid (PFPeA)	15	1.8	ng/L		09/18/20 11:48	09/21/20 01:27	1
Perfluorohexanoic acid (PFHxA)	21	1.8	ng/L		09/18/20 11:48	09/21/20 01:27	1
Perfluoroheptanoic acid (PFHpA)	2.8	1.8	ng/L		09/18/20 11:48	09/21/20 01:27	1
Perfluorooctanoic acid (PFOA)	2.8	1.8	ng/L		09/18/20 11:48	09/21/20 01:27	1
Perfluorononanoic acid (PFNA)	ND	1.8	ng/L		09/18/20 11:48	09/21/20 01:27	1
Perfluorodecanoic acid (PFDA)	ND	1.8	ng/L		09/18/20 11:48	09/21/20 01:27	1
Perfluoroundecanoic acid (PFUnA)	ND	1.8	ng/L		09/18/20 11:48	09/21/20 01:27	1
Perfluorododecanoic acid (PFDoA)	ND	1.8	ng/L		09/18/20 11:48	09/21/20 01:27	1
Perfluorotridecanoic acid (PFTriA)	ND	1.8	ng/L		09/18/20 11:48	09/21/20 01:27	1
Perfluorotetradecanoic acid (PFTeA)	ND	1.8	ng/L		09/18/20 11:48	09/21/20 01:27	1
Perfluorobutanesulfonic acid (PFBS)	7.1	1.8	ng/L		09/18/20 11:48	09/21/20 01:27	1
Perfluoropentanesulfonic acid (PFPeS)	2.3	1.8	ng/L		09/18/20 11:48	09/21/20 01:27	1
Perfluorohexanesulfonic acid (PFHxS)	7.4	1.8	ng/L		09/18/20 11:48	09/21/20 01:27	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND	1.8	ng/L		09/18/20 11:48	09/21/20 01:27	1
Perfluorooctanesulfonic acid (PFOS)	3.4	1.8	ng/L		09/18/20 11:48	09/21/20 01:27	1
Perfluorodecanesulfonic acid (PFDS)	ND	1.8	ng/L		09/18/20 11:48	09/21/20 01:27	1
Perfluorooctanesulfonamide (FOSA)	1.8	1.8	ng/L		09/18/20 11:48	09/21/20 01:27	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND	4.6	ng/L		09/18/20 11:48	09/21/20 01:27	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND	4.6	ng/L		09/18/20 11:48	09/21/20 01:27	1
4:2 FTS	ND	1.8	ng/L		09/18/20 11:48	09/21/20 01:27	1
6:2 FTS	ND	4.6	ng/L		09/18/20 11:48	09/21/20 01:27	1
8:2 FTS	ND	1.8	ng/L		09/18/20 11:48	09/21/20 01:27	1
Isotope Dilution	%Recovery Q	ualifier Limits			Prepared	Analyzed	Dil Fac
13C4 PFBA	77	50 - 150			09/18/20 11:48	09/21/20 01:27	1
13C5 PFPeA	83	50 - 150			09/18/20 11:48	09/21/20 01:27	1
13C2 PFHxA	84	50 - 150			09/18/20 11:48	09/21/20 01:27	1
13C4 PFHpA	87	50 - 150			09/18/20 11:48	09/21/20 01:27	1
13C4 PFOA	88	50 - 150			09/18/20 11:48	09/21/20 01:27	1
13C5 PFNA	89	50 - 150				09/21/20 01:27	1
13C2 PFDA	91	50 - 150				09/21/20 01:27	
13C2 PFUnA	84	50 - 150				09/21/20 01:27	1
13C2 PFDoA	74	50 - 150				09/21/20 01:27	1
13C2 PFTeDA	75	50 - 150				09/21/20 01:27	
13C3 PFBS	86	50 - 150				09/21/20 01:27	1
1802 PFHxS	91	50 - 150				09/21/20 01:27	1
13C4 PFOS	91 91	50 - 150 50 - 150				09/21/20 01:27	1
13C4 FF03 13C8 F0SA	91 91	50 - 150 50 - 150				09/21/20 01:27	1
d3-NMeFOSA	97 80						1
		50 - 150 50 - 150				09/21/20 01:27	
d5-NEtFOSAA	72	50 - 150				09/21/20 01:27	1
M2-6:2 FTS	98	50 - 150				09/21/20 01:27	1
M2-8:2 FTS	250 *5	5 50 - 150			09/18/20 11:48	09/21/20 01:27	1

Client Sample ID: A-1-CW09-DUP Date Collected: 09/16/20 09:08 Date Received: 09/17/20 10:35

Lab Sample ID: 320-64722-2 Matrix: Water

 $\frac{-2}{1} = \frac{3}{3}$ $\frac{3}{4}$ $\frac{5}{1}$

6

Method: EPA 537(Mod) - PFAS Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	9.3		4.6		ng/L		09/18/20 11:48	09/21/20 01:36	1
Perfluoropentanoic acid (PFPeA)	15		1.8		ng/L		09/18/20 11:48	09/21/20 01:36	1
Perfluorohexanoic acid (PFHxA)	21		1.8		ng/L		09/18/20 11:48	09/21/20 01:36	1
Perfluoroheptanoic acid (PFHpA)	2.6		1.8		ng/L		09/18/20 11:48	09/21/20 01:36	1
Perfluorooctanoic acid (PFOA)	3.0		1.8		ng/L		09/18/20 11:48	09/21/20 01:36	1
Perfluorononanoic acid (PFNA)	ND		1.8		ng/L		09/18/20 11:48	09/21/20 01:36	1
Perfluorodecanoic acid (PFDA)	ND		1.8		ng/L		09/18/20 11:48	09/21/20 01:36	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8		ng/L		09/18/20 11:48	09/21/20 01:36	1
Perfluorododecanoic acid (PFDoA)	ND		1.8		ng/L		09/18/20 11:48	09/21/20 01:36	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8		ng/L		09/18/20 11:48	09/21/20 01:36	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8		ng/L		09/18/20 11:48	09/21/20 01:36	1
Perfluorobutanesulfonic acid	7.4		1.8		ng/L			09/21/20 01:36	1
(PFBS)					5				
Perfluoropentanesulfonic acid (PFPeS)	2.2		1.8		ng/L		09/18/20 11:48	09/21/20 01:36	1
Perfluorohexanesulfonic acid (PFHxS)	5.8		1.8		ng/L		09/18/20 11:48	09/21/20 01:36	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.8		ng/L		09/18/20 11:48	09/21/20 01:36	1
Perfluorooctanesulfonic acid (PFOS)	3.3		1.8		ng/L		09/18/20 11:48	09/21/20 01:36	1
Perfluorodecanesulfonic acid (PFDS)	ND		1.8		ng/L		09/18/20 11:48	09/21/20 01:36	1
Perfluorooctanesulfonamide (FOSA)	2.1		1.8		ng/L		09/18/20 11:48	09/21/20 01:36	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.6		ng/L		09/18/20 11:48	09/21/20 01:36	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.6		ng/L		09/18/20 11:48	09/21/20 01:36	1
4:2 FTS	ND		1.8		ng/L		09/18/20 11:48	09/21/20 01:36	1
6:2 FTS	ND		4.6		ng/L		09/18/20 11:48	09/21/20 01:36	1
B:2 FTS	ND		1.8		ng/L		09/18/20 11:48	09/21/20 01:36	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	77		50 - 150					09/21/20 01:36	1
13C5 PFPeA	81		50 - 150					09/21/20 01:36	1
13C2 PFHxA	81		50 - 150					09/21/20 01:36	1
13C4 PFHpA	89		50 - 150					09/21/20 01:36	1
13C4 PFOA	83		50 - 150					09/21/20 01:36	1
13C5 PFNA	92		50 - 150					09/21/20 01:36	1
13C2 PFDA	94		50 - 150					09/21/20 01:36	
13C2 PFUnA	83		50 - 150 50 - 150					09/21/20 01:36	1
13C2 PFDoA	67		50 - 150 50 - 150					09/21/20 01:36	1
13C2 PFTeDA	72		50 - 150 50 - 150					09/21/20 01:36	
13C3 PFBS	83		50 - 150 50 - 150					09/21/20 01:30	1
									-
1802 PFHxS	91 01		50 - 150					09/21/20 01:36	1
13C4 PFOS	91 04		50 - 150 50 - 150					09/21/20 01:36	1
13C8 FOSA	94		50 - 150					09/21/20 01:36	1
d3-NMeFOSAA	80		50 - 150					09/21/20 01:36	1
d5-NEtFOSAA	72		50 - 150					09/21/20 01:36	1
M2-6:2 FTS	98		50 - 150					09/21/20 01:36	1
M2-8:2 FTS	246	76	50 - 150					09/21/20 01:36	1

Client Sample ID: EB-200916 Date Collected: 09/16/20 07:52 Date Received: 09/17/20 10:35

Lab Sample ID: 320-64722-3

Matrix: Water

Analyte	Result Qua	alifier RL	MDL Unit	D Prepared	Analyzed	Dil Fa
Perfluorobutanoic acid (PFBA)	ND	4.4	ng/L	09/18/20 11:48	•	
Perfluoropentanoic acid (PFPeA)	ND	1.8	ng/L	09/18/20 11:48		
Perfluorohexanoic acid (PFHxA)	ND	1.8	ng/L	09/18/20 11:48	8 09/21/20 01:46	
Perfluoroheptanoic acid (PFHpA)	ND	1.8	ng/L	09/18/20 11:48	8 09/21/20 01:46	
Perfluorooctanoic acid (PFOA)	ND	1.8	ng/L	09/18/20 11:48	8 09/21/20 01:46	
Perfluorononanoic acid (PFNA)	ND	1.8	ng/L	09/18/20 11:48	8 09/21/20 01:46	
Perfluorodecanoic acid (PFDA)	ND	1.8	ng/L	09/18/20 11:48	8 09/21/20 01:46	
Perfluoroundecanoic acid (PFUnA)	ND	1.8	ng/L	09/18/20 11:48	8 09/21/20 01:46	
Perfluorododecanoic acid (PFDoA)	ND	1.8	ng/L	09/18/20 11:48	8 09/21/20 01:46	
Perfluorotridecanoic acid (PFTriA)	ND	1.8	ng/L		8 09/21/20 01:46	
Perfluorotetradecanoic acid (PFTeA)	ND	1.8	ng/L		8 09/21/20 01:46	
Perfluorobutanesulfonic acid (PFBS)	ND	1.8	ng/L		8 09/21/20 01:46	
Perfluoropentanesulfonic acid	ND	1.8	ng/L		8 09/21/20 01:46	
(PFPeS)						
Perfluorohexanesulfonic acid (PFHxS)	ND	1.8	ng/L	09/18/20 11:48	8 09/21/20 01:46	
Perfluoroheptanesulfonic Acid (PFHpS)	ND	1.8	ng/L	09/18/20 11:4	8 09/21/20 01:46	
Perfluorooctanesulfonic acid (PFOS)	ND	1.8	ng/L	09/18/20 11:48	8 09/21/20 01:46	
Perfluorodecanesulfonic acid (PFDS)	ND	1.8	ng/L	09/18/20 11:48	8 09/21/20 01:46	
Perfluorooctanesulfonamide (FOSA)	ND	1.8	ng/L	09/18/20 11:48	8 09/21/20 01:46	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND	4.4	ng/L	09/18/20 11:48	8 09/21/20 01:46	
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND	4.4	ng/L	09/18/20 11:48	8 09/21/20 01:46	
4:2 FTS	ND	1.8	ng/L	09/18/20 11:48	8 09/21/20 01:46	
6:2 FTS	ND	4.4	ng/L	09/18/20 11:48	8 09/21/20 01:46	
B:2 FTS	ND	1.8	ng/L	09/18/20 11:48	8 09/21/20 01:46	
Isotope Dilution	%Recovery Qua	alifier Limits		Prepared	Analyzed	Dil Fa
13C4 PFBA	87	50 - 150		09/18/20 11:4		
13C5 PFPeA	90	50 - 150		09/18/20 11:4		
13C2 PFHxA	88	50 - 150			8 09/21/20 01:46	
13C4 PFHpA	93	50 - 150		09/18/20 11:4		
13C4 PFOA	90	50 - 150		09/18/20 11:4		
13C5 PFNA	102	50 - 150			8 09/21/20 01:46	
13C2 PFDA	102	50 - 150			8 09/21/20 01:46	
13C2 PFUnA	94	50 - 150			8 09/21/20 01:46	
13C2 PFDoA	65	50 - 150 50 - 150			8 09/21/20 01:46	
13C2 PFTeDA	91	50 - 150 50 - 150			8 09/21/20 01:40	
13C3 PFBS	93	50 - 150 50 - 150			8 09/21/20 01:40	
1802 PFHxS	93 98	50 - 150 50 - 150			8 09/21/20 01:40 8 09/21/20 01:46	
					8 09/21/20 01:46 8 09/21/20 01:46	
13C4 PFOS 13C8 FOSA	97 95	50 - 150 50 - 150				
13C8 FOSA	95 80	50 - 150 50 - 150			8 09/21/20 01:46 8 09/21/20 01:46	
d3-NMeFOSAA	89 75	50 - 150 50 - 150			8 09/21/20 01:46 8 00/21/20 01:46	
d5-NEtFOSAA	75	50 - 150			8 09/21/20 01:46	
M2-6:2 FTS	105	50 - 150			8 09/21/20 01:46	
M2-8:2 FTS	218 *5	50 - 150		09/18/20 11:4	8 09/21/20 01:46	

Client: Geosyntec Consultants, Inc. Project/Site: PFAS - Hollywood Burbank Airport

Client Sample ID: FB-200916 Date Collected: 09/16/20 07:42 Date Received: 09/17/20 10:35

Job	ID:	320-64722-1
000	·D.	020 04122 1

Lab Sample ID: 320-64722-4

Matrix: Water

nalyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fa
erfluorobutanoic acid (PFBA)	ND	4.4	ng/L	09/18/20 11:48	09/21/20 01:55	
Perfluoropentanoic acid (PFPeA)	ND	1.8	ng/L	09/18/20 11:48	09/21/20 01:55	
erfluorohexanoic acid (PFHxA)	ND	1.8	ng/L	09/18/20 11:48	09/21/20 01:55	
Perfluoroheptanoic acid (PFHpA)	ND	1.8	ng/L	09/18/20 11:48	09/21/20 01:55	
Perfluorooctanoic acid (PFOA)	ND	1.8	ng/L	09/18/20 11:48	09/21/20 01:55	
Perfluorononanoic acid (PFNA)	ND	1.8	ng/L	09/18/20 11:48	09/21/20 01:55	
Perfluorodecanoic acid (PFDA)	ND	1.8	ng/L	09/18/20 11:48	09/21/20 01:55	
Perfluoroundecanoic acid (PFUnA)	ND	1.8	ng/L	09/18/20 11:48	09/21/20 01:55	
Perfluorododecanoic acid (PFDoA)	ND	1.8	ng/L	09/18/20 11:48	09/21/20 01:55	
Perfluorotridecanoic acid (PFTriA)	ND	1.8	ng/L	09/18/20 11:48	09/21/20 01:55	
Perfluorotetradecanoic acid (PFTeA)	ND	1.8	ng/L	09/18/20 11:48	09/21/20 01:55	
Perfluorobutanesulfonic acid (PFBS)	ND	1.8	ng/L	09/18/20 11:48	09/21/20 01:55	
Perfluoropentanesulfonic acid PFPeS)	ND	1.8	ng/L	09/18/20 11:48	09/21/20 01:55	
Perfluorohexanesulfonic acid (PFHxS)	ND	1.8	ng/L	09/18/20 11:48	09/21/20 01:55	
Perfluoroheptanesulfonic Acid PFHpS)	ND	1.8	ng/L	09/18/20 11:48	09/21/20 01:55	
Perfluorooctanesulfonic acid (PFOS)	ND	1.8	ng/L	09/18/20 11:48	09/21/20 01:55	
Perfluorodecanesulfonic acid (PFDS)	ND	1.8	ng/L	09/18/20 11:48	09/21/20 01:55	
Perfluorooctanesulfonamide (FOSA)	ND	1.8	ng/L	09/18/20 11:48	09/21/20 01:55	
I-methylperfluorooctanesulfonamidoa etic acid (NMeFOSAA)	ND	4.4	ng/L	09/18/20 11:48	09/21/20 01:55	
I-ethylperfluorooctanesulfonamidoac tic acid (NEtFOSAA)	ND	4.4	ng/L	09/18/20 11:48	09/21/20 01:55	
:2 FTS	ND	1.8	ng/L	09/18/20 11:48	09/21/20 01:55	
:2 FTS	ND	4.4	ng/L	09/18/20 11:48	09/21/20 01:55	
:2 FTS	ND	1.8	ng/L	09/18/20 11:48	09/21/20 01:55	
sotope Dilution	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fa
3C4 PFBA	86	50 - 150			09/21/20 01:55	
3C5 PFPeA	90	50 - 150		09/18/20 11:48	09/21/20 01:55	
3C2 PFHxA	85	50 - 150			09/21/20 01:55	
3C4 PFHpA	92	50 - 150			09/21/20 01:55	
3C4 PFOA	86	50 - 150			09/21/20 01:55	
3C5 PFNA	95	50 - 150			09/21/20 01:55	
3C2 PFDA	92	50 - 150			09/21/20 01:55	
3C2 PFUnA	90	50 - 150 50 - 150			09/21/20 01:55	
3C2 PFDoA	90 80	50 - 150 50 - 150			09/21/20 01:55	
3C2 PFTeDA	72	50 - 150 50 - 150			09/21/20 01:55	
3C3 PFBS	88	50 - 150 50 - 150			09/21/20 01:55	
802 PFHxS	97	50 - 150			09/21/20 01:55	
3C4 PFOS	93	50 - 150 50 - 150			09/21/20 01:55	
3C8 FOSA	85	50 - 150			09/21/20 01:55	
3-NMeFOSAA	85	50 - 150			09/21/20 01:55	
5-NEtFOSAA	77	50 - 150			09/21/20 01:55	
12-6:2 FTS	102	50 - 150			09/21/20 01:55	
12-8:2 FTS	93	50 - 150		09/18/20 11:48	09/21/20 01:55	

Client: Geosyntec Consultants, Inc. Project/Site: PFAS - Hollywood Burbank Airport

Client Sample ID: A-1-CW03R Date Collected: 09/16/20 10:57 Date Received: 09/17/20 10:35

Job	ID:	320-64722-1
000	·D.	020 04122 1

Lab Sample ID: 320-64722-5

Matrix: Water

5

6

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	40		4.3		ng/L		09/18/20 11:48	09/21/20 02:23	1
Perfluoropentanoic acid (PFPeA)	86		1.7		ng/L			09/21/20 02:23	1
Perfluorohexanoic acid (PFHxA)	120		1.7		ng/L		09/18/20 11:48	09/21/20 02:23	1
Perfluoroheptanoic acid (PFHpA)	13		1.7		ng/L		09/18/20 11:48	09/21/20 02:23	1
Perfluorooctanoic acid (PFOA)	7.4		1.7		ng/L		09/18/20 11:48	09/21/20 02:23	1
Perfluorononanoic acid (PFNA)	1.8		1.7		ng/L		09/18/20 11:48	09/21/20 02:23	1
Perfluorodecanoic acid (PFDA)	3.3		1.7		ng/L		09/18/20 11:48	09/21/20 02:23	1
Perfluoroundecanoic acid (PFUnA)	ND		1.7		ng/L		09/18/20 11:48	09/21/20 02:23	1
Perfluorododecanoic acid (PFDoA)	ND		1.7		ng/L		09/18/20 11:48	09/21/20 02:23	1
Perfluorotridecanoic acid (PFTriA)	ND		1.7		ng/L		09/18/20 11:48	09/21/20 02:23	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.7		ng/L		09/18/20 11:48	09/21/20 02:23	1
Perfluorobutanesulfonic acid PFBS)	20		1.7		ng/L		09/18/20 11:48	09/21/20 02:23	1
Perfluoropentanesulfonic acid PFPeS)	10		1.7		ng/L		09/18/20 11:48	09/21/20 02:23	1
Perfluorohexanesulfonic acid PFHxS)	11		1.7		ng/L		09/18/20 11:48	09/21/20 02:23	1
Perfluoroheptanesulfonic Acid PFHpS)	ND		1.7		ng/L		09/18/20 11:48	09/21/20 02:23	1
Perfluorooctanesulfonic acid PFOS)	15		1.7		ng/L		09/18/20 11:48	09/21/20 02:23	1
Perfluorodecanesulfonic acid (PFDS)	ND		1.7		ng/L		09/18/20 11:48	09/21/20 02:23	
erfluorooctanesulfonamide FOSA)	2.4		1.7		ng/L		09/18/20 11:48	09/21/20 02:23	
J-methylperfluorooctanesulfonamidoa etic acid (NMeFOSAA)	ND		4.3		ng/L		09/18/20 11:48	09/21/20 02:23	
I-ethylperfluorooctanesulfonamidoac tic acid (NEtFOSAA)	ND		4.3		ng/L		09/18/20 11:48	09/21/20 02:23	
:2 FTS	ND		1.7		ng/L		09/18/20 11:48	09/21/20 02:23	
:2 FTS	ND		4.3		ng/L		09/18/20 11:48	09/21/20 02:23	• • • • • • •
:2 FTS	ND		1.7		ng/L		09/18/20 11:48	09/21/20 02:23	
sotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
3C4 PFBA	71		50 - 150					09/21/20 02:23	
3C5 PFPeA	80		50 - 150					09/21/20 02:23	
3C2 PFHxA	86		50 - 150					09/21/20 02:23	
3C4 PFHpA	94		50 - 150					09/21/20 02:23	
3C4 PFOA	92		50 - 150 50 - 150					09/21/20 02:23	
3C5 PFNA	92 100		50 - 150 50 - 150					09/21/20 02:23	
3C2 PFDA	94		50 - 150					09/21/20 02:23	
3C2 PFUnA	94		50 - 150					09/21/20 02:23	
3C2 PFDoA	85		50 - 150					09/21/20 02:23	
3C2 PFTeDA	70		50 - 150					09/21/20 02:23	
3C3 PFBS	89		50 - 150					09/21/20 02:23	
802 PFHxS	99		50 - 150					09/21/20 02:23	
3C4 PFOS	96		50 - 150					09/21/20 02:23	
3C8 FOSA	92		50 - 150					09/21/20 02:23	
3-NMeFOSAA	85		50 - 150				09/18/20 11:48	09/21/20 02:23	
5-NEtFOSAA	84		50 - 150				09/18/20 11:48	09/21/20 02:23	
12-6:2 FTS	151	*5	50 - 150				09/18/20 11:48	09/21/20 02:23	
12-8:2 FTS	125		50 - 150				09/18/20 11:48	09/21/20 02:23	
M2-4:2 FTS	143		50 - 150				09/18/20 11.48	09/21/20 02:23	

Client: Geosyntec Consultants, Inc. Project/Site: PFAS - Hollywood Burbank Airport Job ID: 320-64722-1

5

7

13

Method: EPA 537(Mod) - PFAS for QSM 5.1, Table B-15 Matrix: Water

Matrix: Water							Pre	ep Type:	Total/NA				
Γ		Percent Isotope Dilution Recovery (Acceptance Limits)											
		PFBA	PFPeA	PFHxA	C4PFHA	PFOA	PFNA	PFDA	PFUnA				
Lab Sample ID	Client Sample ID	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)				
320-64722-1	A-1-CW09	77	83	84	87	88	89	91	84				
320-64722-2	A-1-CW09-DUP	77	81	81	89	83	92	94	83				
320-64722-3	EB-200916	87	90	88	93	90	102	100	94				
320-64722-4	FB-200916	86	90	85	92	86	95	92	90				
320-64722-5	A-1-CW03R	71	80	86	94	92	100	94	94				
320-64722-5 MS	A-1-CW03R	70	81	90	91	91	94	92	88				
320-64722-5 MSD	A-1-CW03R	66	77	81	89	83	91	84	84				
LCS 320-413600/2-A	Lab Control Sample	82	86	82	87	81	89	88	86				
MB 320-413600/1-A	Method Blank	100	103	101	106	105	115	105	100				

			Perc	ent Isotope	Dilution Re	covery (Ac	ceptance L	.imits)		
		PFDoA	PFTDA	C3PFBS	PFHxS	PFOS	PFOSA	d3NMFOS	d5NEFOS	
Lab Sample ID	Client Sample ID	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	
320-64722-1	A-1-CW09	74	75	86	91	91	91	80	72	
320-64722-2	A-1-CW09-DUP	67	72	83	91	91	94	80	72	
320-64722-3	EB-200916	65	91	93	98	97	95	89	75	
320-64722-4	FB-200916	80	72	88	97	93	85	85	77	I.
320-64722-5	A-1-CW03R	85	70	89	99	96	92	85	84	
320-64722-5 MS	A-1-CW03R	81	67	88	96	95	90	80	81	
320-64722-5 MSD	A-1-CW03R	77	62	83	93	89	80	74	72	
LCS 320-413600/2-A	Lab Control Sample	79	65	85	93	87	77	79	73	
MB 320-413600/1-A	Method Blank	90	69	104	111	104	101	84	83	

			Perc	ent Isotope
		M262FTS	M282FTS	M242FTS
Lab Sample ID	Client Sample ID	(50-150)	(50-150)	(50-150)
320-64722-1	A-1-CW09	98	250 *5	97
320-64722-2	A-1-CW09-DUP	98	246 *5	106
320-64722-3	EB-200916	105	218 *5	107
320-64722-4	FB-200916	102	93	107
320-64722-5	A-1-CW03R	151 *5	125	143
320-64722-5 MS	A-1-CW03R	130	117	147
320-64722-5 MSD	A-1-CW03R	127	112	140
LCS 320-413600/2-A	Lab Control Sample	89	90	100
MB 320-413600/1-A	Method Blank	111	126	114

Surrogate Legend

PFBA = 13C4 PFBA PFPeA = 13C5 PFPeA PFHxA = 13C2 PFHxA C4PFHA = 13C4 PFHpA PFOA = 13C4 PFOA PFDA = 13C5 PFNA PFDA = 13C2 PFDA PFUnA = 13C2 PFDA PFUnA = 13C2 PFDOA PFTDA = 13C2 PFTeDA C3PFBS = 13C2 PFTeDA C3PFBS = 13C3 PFBS PFHxS = 18O2 PFHxS PFOS = 13C4 PFOS PFOSA = 13C8 FOSA

Isotope Dilution Summary

Client: Geosyntec Consultants, Inc. Project/Site: PFAS - Hollywood Burbank Airport d3NMFOS = d3-NMeFOSAA d5NEFOS = d5-NEtFOSAA M262FTS = M2-6:2 FTS M282FTS = M2-8:2 FTS M242FTS = M2-4:2 FTS

Prep Type: Total/NA

Prep Batch: 413600

5

8

Client Sample ID: Method Blank

Method: EPA 537(Mod) - PFAS for QSM 5.1, Table B-15

Lab Sample ID: MB 320-413600/1-A Matrix: Water Analysis Batch: 414089

-	МВ	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	ND		5.0		ng/L		09/18/20 11:48	09/21/20 00:40	1
Perfluoropentanoic acid (PFPeA)	ND		2.0		ng/L		09/18/20 11:48	09/21/20 00:40	1
Perfluorohexanoic acid (PFHxA)	ND		2.0		ng/L		09/18/20 11:48	09/21/20 00:40	1
Perfluoroheptanoic acid (PFHpA)	ND		2.0		ng/L		09/18/20 11:48	09/21/20 00:40	1
Perfluorooctanoic acid (PFOA)	ND		2.0		ng/L		09/18/20 11:48	09/21/20 00:40	1
Perfluorononanoic acid (PFNA)	ND		2.0		ng/L		09/18/20 11:48	09/21/20 00:40	1
Perfluorodecanoic acid (PFDA)	ND		2.0		ng/L		09/18/20 11:48	09/21/20 00:40	1
Perfluoroundecanoic acid (PFUnA)	ND		2.0		ng/L		09/18/20 11:48	09/21/20 00:40	1
Perfluorododecanoic acid (PFDoA)	ND		2.0		ng/L		09/18/20 11:48	09/21/20 00:40	1
Perfluorotridecanoic acid (PFTriA)	ND		2.0		ng/L		09/18/20 11:48	09/21/20 00:40	1
Perfluorotetradecanoic acid (PFTeA)	ND		2.0		ng/L		09/18/20 11:48	09/21/20 00:40	1
Perfluorobutanesulfonic acid (PFBS)	ND		2.0		ng/L		09/18/20 11:48	09/21/20 00:40	1
Perfluoropentanesulfonic acid (PFPeS)	ND		2.0		ng/L		09/18/20 11:48	09/21/20 00:40	1
Perfluorohexanesulfonic acid (PFHxS)	ND		2.0		ng/L		09/18/20 11:48	09/21/20 00:40	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		2.0		ng/L		09/18/20 11:48	09/21/20 00:40	1
Perfluorooctanesulfonic acid (PFOS)	ND		2.0		ng/L		09/18/20 11:48	09/21/20 00:40	1
Perfluorodecanesulfonic acid (PFDS)	ND		2.0		ng/L		09/18/20 11:48	09/21/20 00:40	1
Perfluorooctanesulfonamide (FOSA)	ND		2.0		ng/L		09/18/20 11:48	09/21/20 00:40	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		5.0		ng/L		09/18/20 11:48	09/21/20 00:40	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		5.0		ng/L		09/18/20 11:48	09/21/20 00:40	1
4:2 FTS	ND		2.0		ng/L		09/18/20 11:48	09/21/20 00:40	1
6:2 FTS	14.0		5.0		ng/L		09/18/20 11:48	09/21/20 00:40	1
8:2 FTS	ND		2.0		ng/L		09/18/20 11:48	09/21/20 00:40	1
	МВ	МВ							
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	100		50 - 150				09/18/20 11:48	09/21/20 00:40	1
13C5 PFPeA	103		50 - 150				09/18/20 11:48	09/21/20 00:40	1
13C2 PFHxA	101		50 - 150				09/18/20 11:48	09/21/20 00:40	1
13C4 PFHpA	106		50 - 150				09/18/20 11:48	09/21/20 00:40	1
13C4 PFOA	105		50 - 150				09/18/20 11:48	09/21/20 00:40	1
13C5 PFNA	115		50 - 150				09/18/20 11:48	09/21/20 00:40	1
13C2 PFDA	105		50 - 150					09/21/20 00:40	1
13C2 PFUnA	100		50 - 150				09/18/20 11:48	09/21/20 00:40	1
13C2 PFDoA	90		50 - 150				09/18/20 11:48	09/21/20 00:40	1
13C2 PFTeDA	69		50 - 150				09/18/20 11:48	09/21/20 00:40	1
13C3 PFBS	104		50 - 150					09/21/20 00:40	1
18O2 PFHxS	111		50 - 150				09/18/20 11:48	09/21/20 00:40	1
13C4 PFOS	104		50 - 150					09/21/20 00:40	1
13C8 FOSA	101		50 - 150				09/18/20 11:48	09/21/20 00:40	1
d3-NMeFOSAA	84		50 - 150					09/21/20 00:40	1
d5-NEtFOSAA	83		50 - 150					09/21/20 00:40	1
M2-6:2 FTS	111		50 - 150					09/21/20 00:40	1
M2-8:2 FTS	126		50 - 150					09/21/20 00:40	1
M2-4:2 FTS	114		50 - 150				09/18/20 11:48	09/21/20 00:40	1
Job ID: 320-64722-1

5

8

Client Sample ID: Lab Control Sample

Method: EPA 537(Mod) - PFAS for QSM 5.1, Table B-15 (Continued)

Lab Sample ID: LCS 320-413600/2-A Matrix: Water

Tep Type: Total/NA Prep Batch: 413600 Rec. imits 6-136 1.131 3-133 2-132 0-130 5-135 6-136 8-128
imits 6 - 136 1 - 131 3 - 133 2 - 132 0 - 130 5 - 135 6 - 136 8 - 128
imits 6 - 136 1 - 131 3 - 133 2 - 132 0 - 130 5 - 135 6 - 136 8 - 128
6 - 136 1 - 131 3 - 133 2 - 132 0 - 130 5 - 135 6 - 136 8 - 128
1 - 131 3 - 133 2 - 132 0 - 130 5 - 135 6 - 136 8 - 128
3 - 133 2 - 132 0 - 130 5 - 135 6 - 136 8 - 128
2 - 132 0 - 130 5 - 135 6 - 136 8 - 128
0 - 130 5 - 135 6 - 136 8 - 128
5 - 135 6 - 136 8 - 128
6 - 136 8 - 128
8 - 128
1 - 131
1 - 131
4 4 9 4
1 - 131
0 - 130
5-100
7 - 127
6 - 126
9 - 119
6 - 136
0 400
0 - 130
1 - 131
1-101
3 - 133
6 - 136
6 - 136
0 400
9 - 139
9_175
5 - 135

Eurofins TestAmerica, Sacramento

8

Method: EPA 537(Mod) - PFAS for QSM 5.1, Table B-15 (Continued) Lab Sample ID: LCS 320-413600/2-A **Client Sample ID: Lab Control Sample** Matrix: Water Prep Type: Total/NA Analysis Batch: 414089 Prep Batch: 413600 LCS LCS Isotope Dilution %Recovery Qualifier Limits d3-NMeFOSAA 79 50 - 150 d5-NEtFOSAA 73 50 - 150 50 - 150 M2-6:2 FTS 89 M2-8:2 FTS 90 50 - 150 M2-4:2 FTS 100 50 - 150 Lab Sample ID: 320-64722-5 MS Client Sample ID: A-1-CW03R **Matrix: Water** Prep Type: Total/NA Analysis Batch: 414089 **Prep Batch: 413600** MS MS Sample Sample Spike %Rec. Analvte **Result Qualifier** Added **Result Qualifier** Unit D %Rec Limits 40 Perfluorobutanoic acid (PFBA) 35.9 83.2 ng/L 120 76 - 136 Perfluoropentanoic acid (PFPeA) 86 35.9 119 ng/L 92 71 - 131 Perfluorohexanoic acid (PFHxA) 120 35.9 151 ng/L 90 73 - 133 Perfluoroheptanoic acid (PFHpA) 13 35.9 51.8 ng/L 108 72 - 132 Perfluorooctanoic acid (PFOA) 7.4 35.9 43.0 70 - 130 ng/L 99 35.9 Perfluorononanoic acid (PFNA) 1.8 38.9 ng/L 103 75 - 135 Perfluorodecanoic acid (PFDA) 3.3 35.9 38.9 99 76 - 136 ng/L Perfluoroundecanoic acid ND 35.9 40.9 ng/L 111 68 - 128 (PFUnA) ND 35.9 37.6 103 Perfluorododecanoic acid 71 - 131 ng/L (PFDoA) ND 35.9 33.0 92 71 - 131 Perfluorotridecanoic acid ng/L (PFTriA) Perfluorotetradecanoic acid ND 35.9 35.2 ng/L 98 70 - 130 (PFTeA) Perfluorobutanesulfonic acid 20 31.7 57.6 ng/L 120 67 - 127 (PFBS) Perfluoropentanesulfonic acid 10 33.7 50.6 ng/L 120 66 - 126 (PFPeS) 32.7 102 Perfluorohexanesulfonic acid 11 44.7 ng/L 59 - 119 (PFHxS) ND 34.2 35.8 Perfluoroheptanesulfonic Acid 105 76 - 136 ng/L (PFHpS) Perfluorooctanesulfonic acid 15 33.3 46.1 ng/L 92 70 - 130 (PFOS) Perfluorodecanesulfonic acid ND 34.6 31.8 ng/L 92 71 - 131 (PFDS) 35.9 Perfluorooctanesulfonamide 2.4 44.0 ng/L 116 73 - 133 (FOSA) ND 35.9 38.7 108 76 - 136 N-methylperfluorooctanesulfona ng/L midoacetic acid (NMeFOSAA) ND 35.9 N-ethylperfluorooctanesulfonami 34.3 ng/L 95 76 - 136 doacetic acid (NEtFOSAA) 4:2 FTS 33.5 98 ND 34.5 ng/L 79 - 139

8:2 FTS	ND		34.4
	MS N	//S	
Isotope Dilution	%Recovery G	Qualifier	Limits
13C4 PFBA	70		50 - 150
13C5 PFPeA	81		50 - 150
13C2 PFHxA	90		50 - 150

ND

6:2 FTS

Eurofins TestAmerica, Sacramento

59 - 175

75 - 135

94

114

34.0

35.5

39.2

ng/L

ng/L

Prep Type: Total/NA

Prep Batch: 413600

Client Sample ID: A-1-CW03R

Method: EPA 537(Mod) - PFAS for QSM 5.1, Table B-15 (Continued)

... ...

Lab Sample ID: 320-64722-5 MS **Matrix: Water**

Analysis Batch: 414089

	MS	MS	
Isotope Dilution	%Recovery	Qualifier	Limits
13C4 PFHpA	91		50 - 150
13C4 PFOA	91		50 - 150
13C5 PFNA	94		50 - 150
13C2 PFDA	92		50 - 150
13C2 PFUnA	88		50 - 150
13C2 PFDoA	81		50 - 150
13C2 PFTeDA	67		50 - 150
13C3 PFBS	88		50 - 150
18O2 PFHxS	96		50 - 150
13C4 PFOS	95		50 - 150
13C8 FOSA	90		50 - 150
d3-NMeFOSAA	80		50 - 150
d5-NEtFOSAA	81		50 - 150
M2-6:2 FTS	130		50 - 150
M2-8:2 FTS	117		50 - 150
M2-4:2 FTS	147		50 - 150

Lab Sample ID: 320-64722-5 MSD **Matrix: Water**

Analysis Batch: 414089									Prep Ba	atch: 41	13600
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Perfluorobutanoic acid (PFBA)	40		36.9	81.4		ng/L		112	76 - 136	2	30
Perfluoropentanoic acid (PFPeA)	86		36.9	115		ng/L		79	71 - 131	3	30
Perfluorohexanoic acid (PFHxA)	120		36.9	167		ng/L		132	73 - 133	10	30
Perfluoroheptanoic acid (PFHpA)	13		36.9	50.4		ng/L		102	72 - 132	3	30
Perfluorooctanoic acid (PFOA)	7.4		36.9	44.7		ng/L		101	70 - 130	4	30
Perfluorononanoic acid (PFNA)	1.8		36.9	38.5		ng/L		100	75 - 135	1	30
Perfluorodecanoic acid (PFDA)	3.3		36.9	42.6		ng/L		107	76 - 136	9	30
Perfluoroundecanoic acid	ND		36.9	39.2		ng/L		103	68 - 128	4	30
(PFUnA) Perfluorododecanoic acid	ND		36.9	40.8		ng/L		108	71 - 131	8	30
(PFDoA)										-	
Perfluorotridecanoic acid	ND		36.9	35.2		ng/L		96	71 - 131	7	30
(PFTriA)											
Perfluorotetradecanoic acid	ND		36.9	33.4		ng/L		90	70 - 130	5	30
(PFTeA)								400	07 107		~~~
Perfluorobutanesulfonic acid (PFBS)	20		32.6	59.8		ng/L		123	67 - 127	4	30
Perfluoropentanesulfonic acid	10		34.6	51.0		ng/L		117	66 - 126	1	30
(PFPeS)	44		22.0	40.0				400	50 440	0	20
Perfluorohexanesulfonic acid (PFHxS)	11		33.6	46.0		ng/L		103	59 - 119	3	30
Perfluoroheptanesulfonic Acid	ND		35.1	37.9		ng/L		108	76 - 136	6	30
(PFHpS)											
Perfluorooctanesulfonic acid (PFOS)	15		34.2	49.0		ng/L		98	70 - 130	6	30
Perfluorodecanesulfonic acid	ND		35.5	31.8		ng/L		90	71 - 131	0	30
(PFDS)	<i>.</i> .									_	
Perfluorooctanesulfonamide (FOSA)	2.4		36.9	46.2		ng/L		119	73 - 133	5	30

Client Sample ID: A-1-CW03R Prep Type: Total/NA

Eurofins TestAmerica, Sacramento

Method: EPA 537(Mod) - PFAS for QSM 5.1, Table B-15 (Continued)

Lab Sample ID: 320-64722 Matrix: Water Analysis Batch: 414089	2-5 MSD						C	Client S	ample ID: Prep Ty Prep Ba	pe: Tot	al/NA
	-	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	ND		36.9	39.9		ng/L		108	76 - 136	3	30
N-ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)	ND		36.9	39.7		ng/L		108	76 - 136	15	30
4:2 FTS	ND		34.4	33.7		ng/L		93	79 - 139	3	30
6:2 FTS	ND		35.0	34.5		ng/L		89	59 - 175	3	30
8:2 FTS	ND		35.3	36.6		ng/L		104	75 - 135	7	30
	MSD	MSD									
Isotope Dilution	%Recovery	Qualifier	Limits								
13C4 PFBA	66		50 - 150								
13C5 PFPeA	77		50 - 150								
13C2 PFHxA	81		50 - 150								
13C4 PFHpA	89		50 - 150								
13C4 PFOA	83		50 - 150								
13C5 PFNA	91		50 - 150								
13C2 PFDA	84		50 - 150								
13C2 PFUnA	84		50 - 150								
13C2 PFDoA	77		50 - 150								
13C2 PFTeDA	62		50 - 150								
13C3 PFBS	83		50 - 150								
18O2 PFHxS	93		50 - 150								
13C4 PFOS	89		50 - 150								
13C8 FOSA	80		50 - 150								
d3-NMeFOSAA	74		50 - 150								
d5-NEtFOSAA	72		50 - 150								
M2-6:2 FTS	127		50 - 150								
M2-8:2 FTS	112		50 - 150								
M2-4:2 FTS	140		50 - 150								

QC Association Summary

Client: Geosyntec Consultants, Inc. Project/Site: PFAS - Hollywood Burbank Airport

A-1-CW03R

Job ID: 320-64722-1

LCMS

Prep Batch: 413600

320-64722-5 MSD

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-64722-1	A-1-CW09	Total/NA	Water	3535	
320-64722-2	A-1-CW09-DUP	Total/NA	Water	3535	
320-64722-3	EB-200916	Total/NA	Water	3535	
320-64722-4	FB-200916	Total/NA	Water	3535	
320-64722-5	A-1-CW03R	Total/NA	Water	3535	
MB 320-413600/1-A	Method Blank	Total/NA	Water	3535	
_CS 320-413600/2-A	Lab Control Sample	Total/NA	Water	3535	
320-64722-5 MS	A-1-CW03R	Total/NA	Water	3535	
320-64722-5 MSD	A-1-CW03R	Total/NA	Water	3535	
nalysis Batch: 4140	089				
nalysis Batch: 4140					
_ab Sample ID	Client Sample ID	Prep Type	Matrix	Method EPA 537(Mod)	
-ab Sample ID 320-64722-1	A-1-CW09	Total/NA	Water	EPA 537(Mod)	41360
Lab Sample ID 320-64722-1 320-64722-2	A-1-CW09 A-1-CW09	Total/NA Total/NA	Water Water	EPA 537(Mod) EPA 537(Mod)	41360 41360
Lab Sample ID 320-64722-1 320-64722-2 320-64722-3	Client Sample ID A-1-CW09 A-1-CW09-DUP EB-200916	Total/NA Total/NA Total/NA	Water Water Water	EPA 537(Mod) EPA 537(Mod) EPA 537(Mod)	Prep Batc 41360 41360 41360 41360
Lab Sample ID 320-64722-1 320-64722-2 320-64722-3 320-64722-4	Client Sample ID A-1-CW09 A-1-CW09-DUP EB-200916 FB-200916	Total/NA Total/NA Total/NA Total/NA	Water Water Water Water	EPA 537(Mod) EPA 537(Mod) EPA 537(Mod) EPA 537(Mod)	41360 41360 41360 41360 41360
Lab Sample ID 320-64722-1 320-64722-2 320-64722-3 320-64722-4 320-64722-5	Client Sample ID A-1-CW09 A-1-CW09-DUP EB-200916 FB-200916 A-1-CW03R	Total/NA Total/NA Total/NA Total/NA Total/NA	Water Water Water Water Water	EPA 537(Mod) EPA 537(Mod) EPA 537(Mod) EPA 537(Mod) EPA 537(Mod)	41360 41360 41360 41360 41360 41360
Lab Sample ID 320-64722-1 320-64722-2 320-64722-3 320-64722-4 320-64722-5 MB 320-413600/1-A	Client Sample ID A-1-CW09 A-1-CW09-DUP EB-200916 FB-200916 A-1-CW03R Method Blank	Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA	Water Water Water Water Water Water	EPA 537(Mod) EPA 537(Mod) EPA 537(Mod) EPA 537(Mod) EPA 537(Mod) EPA 537(Mod)	41360 41360 41360 41360 41360 41360 41360
Lab Sample ID 320-64722-1 320-64722-2 320-64722-3 320-64722-4 320-64722-5	Client Sample ID A-1-CW09 A-1-CW09-DUP EB-200916 FB-200916 A-1-CW03R	Total/NA Total/NA Total/NA Total/NA Total/NA	Water Water Water Water Water	EPA 537(Mod) EPA 537(Mod) EPA 537(Mod) EPA 537(Mod) EPA 537(Mod)	41360 41360 41360 41360 41360 41360

Total/NA

Water

15

413600

EPA 537(Mod)

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Lab Sample ID: 320-64722-1

Lab Sample ID: 320-64722-2

Lab Sample ID: 320-64722-3

Lab Sample ID: 320-64722-4

Lab Sample ID: 320-64722-5

Client Sample ID: A-1-CW09 Date Collected: 09/16/20 09:08 Date Received: 09/17/20 10:35

Ргер Туре	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3535			274.5 mL	10.00 mL	413600	09/18/20 11:48	LA	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			414089	09/21/20 01:27	IK	TAL SAC

Client Sample ID: A-1-CW09-DUP Date Collected: 09/16/20 09:08 Date Received: 09/17/20 10:35

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3535			273.6 mL	10.00 mL	413600	09/18/20 11:48	LA	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			414089	09/21/20 01:36	IK	TAL SAC

Client Sample ID: EB-200916 Date Collected: 09/16/20 07:52

Date	Received:	09/17/20	10:35
------	------------------	----------	-------

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3535			284.6 mL	10.00 mL	413600	09/18/20 11:48	LA	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			414089	09/21/20 01:46	IK	TAL SAC

Client Sample ID: FB-200916

Date Collected: 09/16/20 07:42

Date Received: 09/17/20 10:35

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3535			282.4 mL	10.00 mL	413600	09/18/20 11:48	LA	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			414089	09/21/20 01:55	IK	TAL SAC

Client Sample ID: A-1-CW03R Date Collected: 09/16/20 10:57 Date Received: 09/17/20 10:35

Bron Tuno	Batch	Batch Method	Bun	Dil	Initial Amount	Final	Batch Number	Prepared or Analvzed	Analvst	Lob
Prep Type	Туре	Wiethou	Run	Factor	Amount	Amount	Number	of Analyzeu	Analyst	Lab
Total/NA	Prep	3535			293.7 mL	10.00 mL	413600	09/18/20 11:48	LA	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			414089	09/21/20 02:23	IK	TAL SAC

Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

	ns TestAmerica, Sacrament is listed below are applicable to this report.	0	
Authority	Program	Identification Number	Expiration Date
alifornia	State	2897	01-31-22

Method Summary

Client: Geosyntec Consultants, Inc. Project/Site: PFAS - Hollywood Burbank Airport

5
8
9
12
13

Method	Method Description	Protocol	Laboratory
EPA 537(Mod)	PFAS for QSM 5.1, Table B-15	EPA	TAL SAC
3535	Solid-Phase Extraction (SPE)	SW846	TAL SAC

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Sample Summary

Client: Geosyntec Consultants, Inc. Project/Site: PFAS - Hollywood Burbank Airport Job ID: 320-64722-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
320-64722-1	A-1-CW09	Water	09/16/20 09:08	09/17/20 10:35
320-64722-2	A-1-CW09-DUP	Water	09/16/20 09:08	09/17/20 10:35
320-64722-3	EB-200916	Water	09/16/20 07:52	09/17/20 10:35
320-64722-4	FB-200916	Water	09/16/20 07:42	09/17/20 10:35
320-64722-5	A-1-CW03R	Water	09/16/20 10:57	09/17/20 10:35

sill to		And	Lab LIMS No:	MATRIX CODES
	bort to (in dimeterit)		LAB USE ONLY:	DW: DRINKING WATER
			#Ascorbic/HCL Vials #HCI Vials	GW: GROUND WATER
Sampling	Sampling Site Address (if different) Include State		# _ Na2S2O3	WW: WASTEWATER
Burba	Burbank, CA		#Na OH/Zn acetate pH	SO: SOIL
			# _ HNO3 PH	SL: SLUDGE
			# _ H2SO4 pH	OIL: OIL
o. No.	P.O. No. WR2693 – 02A PWSID #:		# NaOH pH	SOL: NON SOIL SOLID
Quote #	Quote # 57005935		#Unpreserved	MI: MISCELLANEOUS
e-mail: r	e-mail: mdesai@geosyntec.com		#HCI #NH4CI #MeOH	X: OTHER
Col		mber of Containers	# DI Water	
Date	Military R O Matrix Time B P Code Total S O		T YSI	Field pH, Temp (⁰ C), DO, Cl2, Cond. etc.
19/11	91161200003 X GW 2	2	PFAS (23 analytes as required by CA ELAP)	(d
-	GOOG K GW 2	2	PFAS (23 analytes as required by CA ELAP)	(d
-	6752 × GWWW2	2	PFAS (23 analytes as required by CA ELAP)	(d
-	6742 X GW W 2	2	PFAS (23 analytes as required by CA ELAP)	(d
	1057 X GW 2	2	PFAS (23 analytes as required by CA ELAP)	(d
	1057X GW 2	2	PFAS (23 analytes as required by CA ELAP)	ASWISW (d
-	X 6W 2	2	PFAS (23 analytes as required by CA ELAP)	(d
-	GW 2	2	PFAS (23 analytes as required by CA ELAP)	(d
	GW 2	2	PFAS (23 analytes as required by CA ELAP)	(J
>	GW 2	2	PFAS (23 analytes as required by CA ELAP)	P)
TAT: DSTANDARD (10 DAY)	AY) Report Format: Standard	I NJ-RDD SRP-RDD		yzed By:
1	/ Standard + QC Forms	ns 🖪 EDD	Initials	Date/Time:
INTENTION		y) turnarourid and for an out standard reporting format. EFILE FEAT SIGNATIBE DATE AND MILITADV	AL MILITARY TIME /24 HOLIE CLOCK LE 8AM IS 8800 4 PM IS 1600	NUCE IN IN TOUS
TIME	BY USE			ouu, 4 PMI IS 10UU) Custody Seal Number
	They with	02/12/20	12:35 DUPS NEEDEX DOTHER	
	RÉCEIVED BY U / 2.	DATE /	TIME Rec'd Temp.: Initials:	Ice Y / N Location:
TIME	RECEIVED BY	DATE		
TIME	RECEIVED BY	DATE	TIME	
TIME	RECEIVED RY	DATE	TIME	

9/29/2020

Client: Geosyntec Consultants, Inc.

Login Number: 64722 List Number: 1 Creator: Her, David A

Question	Answer	Comment
	True	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>nue</td> <td></td>	nue	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	False	Refer to Job Narrative for details.
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	

List Source: Eurofins TestAmerica, Sacramento

Water Chemistry Results

🛟 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins Calscience LLC 7440 Lincoln Way Garden Grove, CA 92841 Tel: (714)895-5494

Laboratory Job ID: 570-38567-1

Client Project/Site: Burbank Airport

For:

Geosyntec Consultants, Inc. 65 N. Raymond Avenue Suite 200 Pasadena, California 91103

Attn: Mital Desai

Moah

Authorized for release by: 9/29/2020 5:11:10 PM Stephen Nowak, Project Manager I

(714)895-5494 Stephen.Nowak@eurofinset.com

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	9
QC Association Summary	13
Lab Chronicle	15
Certification Summary	16
Method Summary	17
Sample Summary	18
Chain of Custody	19
Receipt Checklists	20

Qualifiers

Qualifiers	
HPLC/IC	
Qualifier	Qualifier Description
E	Result exceeded calibration range.
F1	MS and/or MSD recovery exceeds control limits.
Metals	
Qualifier	Qualifier Description
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not
	applicable.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

- TEQ Toxicity Equivalent Quotient (Dioxin)
- TNTC Too Numerous To Count

Job ID: 570-38567-1

Laboratory: Eurofins Calscience LLC

Narrative

Job Narrative 570-38567-1

Case Narrative

Comments

No additional comments.

Receipt

The samples were received on 9/16/2020 4:49 PM; the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 4.4° C.

HPLC/IC

Method 300.0: The native sample, matrix spike, and matrix spike duplicate (MS/MSD) associated with analytical batch 570-95146 were performed at the same dilution. Due to the additional level of analyte present in the spiked samples, the concentration of Chloride in the MS/MSD was above the instrument calibration range. The data have been reported and qualified.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

Method 6010B: Due to the high concentration of Calcium, Magnesium and Sodium the matrix spike / matrix spike duplicate (MS/MSD) for preparation batch 570-97577 and analytical batch 570-98065 could not be evaluated for accuracy and precision. The associated laboratory control sample (LCS) met acceptance criteria.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Client Sample ID: A-1-CW09

Lab Sample ID: 570-38567-1

Lab Sample ID: 570-38567-2

lient Sample ID: A-1-CW09				Lab Sa	Lab Sample ID: 570-38567-1					
Analyte	Result Qu	ualifier RL	Unit	Dil Fac D	Method	Ргер Туре				
Chloride	93	1.0	mg/L	1	300.0	Total/NA				
Nitrate as N	27	1.0	mg/L	10	300.0	Total/NA				
Sulfate	84	10	mg/L	10	300.0	Total/NA				
Calcium	139	2.00	mg/L	1	6010B	Total/NA				
Magnesium	34.9	0.500	mg/L	1	6010B	Total/NA				
Potassium	5.77	2.00	mg/L	1	6010B	Total/NA				
Sodium	37.9	2.00	mg/L	1	6010B	Total/NA				
Alkalinity, Total (As CaCO3)	273	5.00	mg/L	1	SM 2320B	Total/NA				
Bicarbonate (as CaCO3)	273	5.00	mg/L	1	SM 2320B	Total/NA				
Total Dissolved Solids	875	1.00	mg/L	1	SM 2540C	Total/NA				

Client Sample ID: A-1-CW03R

Analyte	Result	Qualifier	RL	Unit	Dil Fac	Method	Prep Type
Chloride	43	F1	1.0	mg/L	1	300.0	Total/NA
Nitrate as N	0.15		0.10	mg/L	1	300.0	Total/NA
Sulfate	21		1.0	mg/L	1	300.0	Total/NA
Calcium	38.8		2.00	mg/L	1	6010B	Total/NA
Magnesium	11.7		0.500	mg/L	1	6010B	Total/NA
Potassium	6.32		2.00	mg/L	1	6010B	Total/NA
Sodium	26.5		2.00	mg/L	1	6010B	Total/NA
Alkalinity, Total (As CaCO3)	135		5.00	mg/L	1	SM 2320B	Total/NA
Bicarbonate (as CaCO3)	135		5.00	mg/L	1	SM 2320B	Total/NA
Total Dissolved Solids	325		1.00	mg/L	1	SM 2540C	Total/NA

Job ID: 570-38567-1

Method: 300.0 - Anions, Ion Chromatography

Client Sample ID: A-1-CW09 Date Collected: 09/16/20 09:08 Date Received: 09/16/20 16:49								: Water
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	93		1.0	mg/L			09/17/20 10:47	1
Nitrate as N	27		1.0	mg/L			09/17/20 15:30	10
Sulfate	84		10	mg/L			09/17/20 15:30	10
Client Sample ID: A-1-CW03R						Lab Sa	mple ID: 570-3	8567-2
Date Collected: 09/16/20 10:57							Matrix	: Water
Date Received: 09/16/20 16:49								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	43	F1	1.0	mg/L			09/17/20 11:05	1
Nitrate as N	0.15		0.10	mg/L			09/17/20 11:05	1
Sulfate	21		1.0	mg/L			09/17/20 11:05	1

Method: 6010B - Metals (ICP)

Client Sample ID: A-1-CW09 Date Collected: 09/16/20 09:08 Date Received: 09/16/20 16:49						Lab San	nple ID: 570-3 Matrix	88567-1 : Water
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	139		2.00	mg/L		09/28/20 07:00	09/29/20 11:08	1
Magnesium	34.9		0.500	mg/L		09/28/20 07:00	09/29/20 11:08	1
Potassium	5.77		2.00	mg/L		09/28/20 07:00	09/29/20 11:08	1
Sodium	37.9		2.00	mg/L		09/28/20 07:00	09/29/20 11:08	1
Client Sample ID: A-1-CW03R Date Collected: 09/16/20 10:57 Date Received: 09/16/20 16:49						Lab San	nple ID: 570-3 Matrix	88567-2 : Water
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	38.8		2.00	mg/L		09/28/20 07:00	09/29/20 11:11	1
Magnesium	11.7		0.500	mg/L		09/28/20 07:00	09/29/20 11:11	1
Potassium	6.32		2.00	mg/L		09/28/20 07:00	09/29/20 11:11	1
Sodium	26.5		2.00	mg/L		09/28/20 07:00	09/29/20 11:11	1

Job ID: 570-38567-1

General Chemistry

Client Sample ID: A-1-CW09 Date Collected: 09/16/20 09:08 Date Received: 09/16/20 16:49						Lab Sa	mple ID: 570-3 Matrix	8567-1 : Water
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity, Total (As CaCO3)	273		5.00	mg/L			09/25/20 20:11	1
Bicarbonate (as CaCO3)	273		5.00	mg/L			09/25/20 20:11	1
Carbonate (as CaCO3)	ND		5.00	mg/L			09/25/20 20:11	1
Hydroxide (as CaCO3)	ND		5.00	mg/L			09/25/20 20:11	1
Total Dissolved Solids	875		1.00	mg/L			09/21/20 20:29	1
Client Sample ID: A-1-CW03R						Lab Sa	mple ID: 570-3	8567-2
Date Collected: 09/16/20 10:57							Matrix	: Water
Date Received: 09/16/20 16:49 Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity, Total (As CaCO3)	135		5.00	mg/L		-	09/25/20 20:24	1
Bicarbonate (as CaCO3)	135		5.00	mg/L			09/25/20 20:24	1
Carbonate (as CaCO3)	ND		5.00	mg/L			09/25/20 20:24	1
Hydroxide (as CaCO3)	ND		5.00	mg/L			09/25/20 20:24	1
Total Dissolved Solids	325		1.00	mg/L			09/21/20 20:29	1

5 6

Job ID: 570-38567-1

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 570-951	45/5						CI	ient Sam	ple ID: Me	thod	Blank
Matrix: Water								ione oun	Prep Typ		
Analysis Batch: 95145											
		МВ МВ									
Analyte	Re	sult Qualifie	r	RL	Unit		D	Prepared	Analyz	ed	Dil Fac
Nitrate as N		ND		0.10	mg/L				09/17/20 0		1
_					Ū						
Lab Sample ID: LCS 570-95	145/6					Cli	ent Sa	ample ID	: Lab Con		
Matrix: Water									Prep Typ	e: To	tal/NA
Analysis Batch: 95145											
			Spike	LCS	LCS				%Rec.		
Analyte			Added	Result	Qualifier	Unit		0 %Rec	Limits		
Nitrate as N			5.00	5.002		mg/L		100	90 - 110		
- Lab Comple ID: LCCD 570 (Control C		- Dura
Lab Sample ID: LCSD 570-9	95145/7				, c	lient S	ampi	e ID: Lac	Control S		
Matrix: Water									Prep Тур	e: 10	tal/NA
Analysis Batch: 95145			0	1.005					0/ D		
			Spike	_	LCSD	11		0/ D	%Rec.		RPD
Analyte			Added 5.00		Qualifier	Unit	L	2 %Rec	Limits	RPD	Limit 15
Nitrate as N			5.00	5.000		mg/L		100	90 - 110	0	15
Lab Sample ID: 570-38567-2	2 MS							Client S	ample ID:	4-1-C	W03R
Matrix: Water									Prep Typ		
Analysis Batch: 95145											
Analysis Baton. volte	Sample	Sample	Spike	MS	MS				%Rec.		
Analyte	-	Qualifier	Added	-	Qualifier	Unit) %Rec	Limits		
Nitrate as N	0.15		5.00	5.286		mg/L	=	103	80 - 120		
-											
Lab Sample ID: 570-38567-2	2 MSD							Client S	ample ID:		
Matrix: Water									Prep Typ	e: To	tal/NA
Analysis Batch: 95145											
	Sample	•	Spike	_	MSD				%Rec.		RPD
Analyte		Qualifier	Added		Qualifier	Unit			Limits	RPD	Limit
Nitrate as N	0.15		5.00	5.468		mg/L		106	80 - 120	3	20
Lab Sample ID: MB 570-951	46/5						CI	ient Sam	ple ID: Me	thod	Blank
Matrix: Water									Prep Typ		
Analysis Batch: 95146											
		MB MB									
Analyte	Re	sult Qualifier	r	RL	Unit		D	Prepared	Analyz	ed	Dil Fac
Chloride		ND	·	1.0	mg/L				09/17/20 0		1
Sulfate		ND		1.0	mg/L				09/17/20 0		1
-					5						
Lab Sample ID: LCS 570-95	146/6					Cli	ent Sa	ample ID	: Lab Con	trol S	ample
Matrix: Water								-	Prep Typ		
Analysis Batch: 95146											
-			Spike	LCS	LCS				%Rec.		
Analyte			Added	Result	Qualifier	Unit	[) %Rec	Limits		
Chloride			50.0	50.07		mg/L		100	90 - 110		
Sulfate			50.0	50.14		mg/L		100	90 - 110		

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCSD 570-	-95146/7					C	client S	am	ple		Control Sa		_
Matrix: Water											Prep Type:	Tot	al/NA
Analysis Batch: 95146				• •							~ =		
				Spike		LCSD			_		%Rec.		RPD
Analyte				Added		Qualifier	Unit		D	%Rec		PD	Limit
Chloride				50.0	50.06		mg/L				90 - 110	0	15
Sulfate				50.0	50.14		mg/L			100	90 - 110	0	15
Lab Sample ID: 570-38567	-2 MS								С	lient Sar	nple ID: A-	1-C\	W03R
Matrix: Water											Prep Type:	Tot	al/NA
Analysis Batch: 95146													
-	Sample	Sam	ple	Spike	MS	MS					%Rec.		
Analyte	Result	Qual	ifier	Added	Result	Qualifier	Unit		D	%Rec	Limits		
Chloride	43	F1		50.0	102.1	E	mg/L			117	80 - 120		
Sulfate	21			50.0	76.43		mg/L			110	80 - 120		
Matrix: Water Analysis Batch: 95146		_	_								Prep Type:		
	Sample			Spike		MSD					%Rec.		RPD
Analyte	Result		ifier	Added		Qualifier	Unit		D	%Rec		PD	Limi
Chloride		F1		50.0	104.6	E F1	mg/L				80 - 120	2	20
Sulfate	21			50.0	78.71		mg/L			115	80 - 120	3	20
Method: 6010B - Metals	s (ICP)												
Lab Sample ID: MB 570-97 Matrix: Water	'577/1-A								Clie		le ID: Meth Prep Type:		
Analysis Batch: 98065											Prep Bate		
Analysis Datch. 50005		мв	MB								пер Бай		51511
Analyte	Re		Qualifier	F	٦L	Unit		D	Pi	repared	Analyzed		Dil Fac
Calcium		ND			00	mg/L		-		8/20 07:00	09/29/20 10:3		
Calcium													
Magnesium		ND		0.5	00	mg/L			09/2	8/20 07:00	09/29/20 10:3	32	

Lab Sample ID: LCS 570-97577/2-A **Matrix: Water**

ND

Analysis Batch: 98065

Sodium

	Spike	LCS L	CS				%Rec.	
Analyte	Added	Result C	Qualifier	Unit	D	%Rec	Limits	
Calcium	0.500	0.5102	I	mg/L		102	80 - 120	
Magnesium	0.500	0.5124		mg/L		102	80 - 120	
Potassium	5.00	4.941		mg/L		99	80 - 120	
Sodium	5.00	5.983		ma/L		120	80 - 120	

2.00

mg/L

Lab Sample ID: LCSD 570-97577/3-A **Matrix: Water**

Analysis Batch: 98065 Prep Batch: 97577 Spike LCSD LCSD RPD %Rec. Analyte Added Result Qualifier D %Rec Limits RPD Limit Unit 0.500 Calcium 0.5054 J mg/L 101 80 - 120 1 Magnesium 0.500 0.5151 mg/L 103 80 - 120 1 Potassium 5.00 5.062 mg/L 101 80 - 120 2 Sodium 5.00 5.753 mg/L 115 80 - 120 4

Eurofins Calscience LLC

09/28/20 07:00 09/29/20 10:32

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 97577

1

20

20

20

20

Method: 6010B - Metals (ICP)

Lab Sample ID: 570-38240- Matrix: Water Analysis Batch: 98065	F-1-B MS						CI	ient Sa	mple ID: Matrix Sp Prep Type: Total Prep Batch: 97	/NA
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Calcium	329		1.00	307.5	4	mg/L		-2142	77 - 113	
Magnesium	82.0		1.00	78.39	4	mg/L		-360	56 ₋ 140	
Potassium	11.3		10.0	20.44		mg/L		91	83 - 131	
Sodium	212		10.0	210.3	4	mg/L		-14	73 - 127	

Lab Sample ID: 570-38240-F-1-C MSD Matrix: Water Analysis Batch: 98065

Analysis Batch: 98065									Prep E	Batch: S	97577
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Calcium	329		1.00	313.0	4	mg/L		-1596	77 - 113	2	11
Magnesium	82.0		1.00	78.59	4	mg/L		-340	56 ₋ 140	0	11
Potassium	11.3		10.0	20.68		mg/L		94	83 - 131	1	7
Sodium	212		10.0	210.1	4	mg/L		-15	73 - 127	0	9

Method: SM 2320B - Alkalinity

Lab Sample ID: MB 570-9766 Matrix: Water Analysis Batch: 97663	3/44					Client Sam	ple ID: Method Prep Type: To		1
	MB	MB							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	
Alkalinity, Total (As CaCO3)	ND		5.00	mg/L			09/25/20 19:38	1	
Bicarbonate (as CaCO3)	ND		5.00	mg/L			09/25/20 19:38	1	
Carbonate (as CaCO3)	ND		5.00	mg/L			09/25/20 19:38	1	
Hydroxide (as CaCO3)	ND		5.00	mg/L			09/25/20 19:38	1	

Lab Sample ID: LCS 570-97663/42 Matrix: Water Analysis Batch: 97663

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Alkalinity, Total (As CaCO3)	100	98.37		mg/L		98	80 - 120	

Lab Sample ID: LCSD 570-97663/43 **Client Sample ID: Lab Control Sample Dup Matrix: Water** Prep Type: Total/NA Analysis Batch: 97663 Spike LCSD LCSD %Rec. RPD Analyte Added Result Qualifier Unit %Rec Limits RPD Limit D 80 - 120 Alkalinity, Total (As CaCO3) 100 98.88 99 20 mg/L 1

Lab Sample ID: 570-38567-1 DU Matrix: Water Analysis Batch: 97663

	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Alkalinity, Total (As CaCO3)	273		270.5		mg/L		1	25
Bicarbonate (as CaCO3)	273		270.5		mg/L		1	25
Carbonate (as CaCO3)	ND		ND		mg/L		NC	25
Hydroxide (as CaCO3)	ND		ND		mg/L		NC	25

Eurofins Calscience LLC

Client Sample ID: A-1-CW09

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 570-38567-1

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 570-96197/1 Matrix: Water Analysis Batch: 96197								С	lie	ent Sam	ple ID: N Prep Ty		
	MB												
Analyte	Result	Qualifier		RL		Unit		D	Pr	repared	Analy	zed	Dil Fac
Total Dissolved Solids	ND			1.00		mg/L					09/21/20	20:29	1
Lab Sample ID: LCS 570-96197/2							Cli	ient S	ar	nple ID	: Lab Co	ntrol Sa	ample
Matrix: Water											Prep Ty	/pe: To	tal/NA
Analysis Batch: 96197													
			Spike		LCS	LCS					%Rec.		
Analyte			Added			Qualifier	Unit		D	%Rec	Limits		
Total Dissolved Solids			100		105.0		mg/L			105	84 - 108		
Lab Sample ID: LCSD 570-96197/3						c	lient S	Samp	le	ID: Lab	Control	Sampl	e Dup
Matrix: Water											Prep Ty		
Analysis Batch: 96197												•	
-			Spike		LCSD	LCSD					%Rec.		RPD
Analyte			Added		Result	Qualifier	Unit		D	%Rec	Limits	RPD	Limit
Total Dissolved Solids			100		95.00		mg/L		_	95	84 - 108	10	10
Lab Sample ID: 570-38561-A-3 DU										Client	Sample	ID: Dup	licate
Matrix: Water											Prep Ty		
Analysis Batch: 96197													
	ple Sar	nple			DU	DU							RPD
Analyte Res	ult Qu	alifier			Result	Qualifier	Unit		D			RPD	Limit
Total Dissolved Solids 1	120				1080		mg/L		_			3	10

5 6 7 8 9 10 11 12 13

13 14

HPLC/IC

Analysis Batch: 95145

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-38567-1	A-1-CW09	Total/NA	Water	300.0	
570-38567-2	A-1-CW03R	Total/NA	Water	300.0	
MB 570-95145/5	Method Blank	Total/NA	Water	300.0	
LCS 570-95145/6	Lab Control Sample	Total/NA	Water	300.0	
LCSD 570-95145/7	Lab Control Sample Dup	Total/NA	Water	300.0	
570-38567-2 MS	A-1-CW03R	Total/NA	Water	300.0	
570-38567-2 MSD	A-1-CW03R	Total/NA	Water	300.0	

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
570-38567-1	A-1-CW09	Total/NA	Water	300.0		
570-38567-1	A-1-CW09	Total/NA	Water	300.0		
570-38567-2	A-1-CW03R	Total/NA	Water	300.0		
MB 570-95146/5	Method Blank	Total/NA	Water	300.0		
LCS 570-95146/6	Lab Control Sample	Total/NA	Water	300.0		
LCSD 570-95146/7	Lab Control Sample Dup	Total/NA	Water	300.0		
570-38567-2 MS	A-1-CW03R	Total/NA	Water	300.0		
570-38567-2 MSD	A-1-CW03R	Total/NA	Water	300.0		

Metals

Prep Batch: 97577

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-38567-1	A-1-CW09	Total/NA	Water	3010A	
570-38567-2	A-1-CW03R	Total/NA	Water	3010A	
MB 570-97577/1-A	Method Blank	Total/NA	Water	3010A	
LCS 570-97577/2-A	Lab Control Sample	Total/NA	Water	3010A	
LCSD 570-97577/3-A	Lab Control Sample Dup	Total/NA	Water	3010A	
570-38240-F-1-B MS	Matrix Spike	Total/NA	Water	3010A	
570-38240-F-1-C MSD	Matrix Spike Duplicate	Total/NA	Water	3010A	

Analysis Batch: 98065

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
570-38567-1	A-1-CW09	Total/NA	Water	6010B	97577
570-38567-2	A-1-CW03R	Total/NA	Water	6010B	97577
MB 570-97577/1-A	Method Blank	Total/NA	Water	6010B	97577
LCS 570-97577/2-A	Lab Control Sample	Total/NA	Water	6010B	97577
LCSD 570-97577/3-A	Lab Control Sample Dup	Total/NA	Water	6010B	97577
570-38240-F-1-B MS	Matrix Spike	Total/NA	Water	6010B	97577
570-38240-F-1-C MSD	Matrix Spike Duplicate	Total/NA	Water	6010B	97577

General Chemistry

Analysis Batch: 96197

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-38567-1	A-1-CW09	Total/NA	Water	SM 2540C	
570-38567-2	A-1-CW03R	Total/NA	Water	SM 2540C	
MB 570-96197/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 570-96197/2	Lab Control Sample	Total/NA	Water	SM 2540C	
LCSD 570-96197/3	Lab Control Sample Dup	Total/NA	Water	SM 2540C	
570-38561-A-3 DU	Duplicate	Total/NA	Water	SM 2540C	

QC Association Summary

Client: Geosyntec Consultants, Inc. Project/Site: Burbank Airport

General Chemistry

Analysis Batch: 97663

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-38567-1	A-1-CW09	Total/NA	Water	SM 2320B	
570-38567-2	A-1-CW03R	Total/NA	Water	SM 2320B	
MB 570-97663/44	Method Blank	Total/NA	Water	SM 2320B	
LCS 570-97663/42	Lab Control Sample	Total/NA	Water	SM 2320B	
LCSD 570-97663/43	Lab Control Sample Dup	Total/NA	Water	SM 2320B	
570-38567-1 DU	A-1-CW09	Total/NA	Water	SM 2320B	

Job ID: 570-38567-1

Client Sample ID: A-1-CW09 Date Collected: 09/16/20 09:08 Date Received: 09/16/20 16:49

Lab Sample ID: 570-38567-7

Matrix: Wate

1	
ər	
_	4
	5
	8
	9
_	
2 er	

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumen	300.0 it ID: IC9		1			95146	09/17/20 10:47	URMH	ECL 1
Total/NA	Analysis Instrumen	300.0 it ID: IC9		10			95145	09/17/20 15:30	URMH	ECL 1
Total/NA	Analysis Instrumen	300.0 tt ID: IC9		10			95146	09/17/20 15:30	URMH	ECL 1
Total/NA	Prep	3010A			50 mL	50 mL	97577	09/28/20 07:00	WL8G	ECL 1
Total/NA	Analysis Instrumen	6010B t ID: ICP8		1			98065	09/29/20 11:08	ULPF	ECL 1
Total/NA	Analysis Instrumen	SM 2320B t ID: ManSciMantecl	h	1	35 mL	35 mL	97663	09/25/20 20:11	UAPD	ECL 1
Total/NA	Analysis Instrumen	SM 2540C tt ID: NOEQUIP		1	20 mL	20 mL	96197	09/21/20 20:29	WN6Y	ECL 1
	ple ID: A-1 ed: 09/16/20 1						L	ab Sample		-38567-2 trix: Water

Clie Date Collected: 09/16/20 10:57 Date Received: 09/16/20 16:49

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumen	300.0 t ID: IC9		1			95145	09/17/20 11:05	URMH	ECL 1
Total/NA	Analysis Instrumen	300.0 t ID: IC9		1			95146	09/17/20 11:05	URMH	ECL 1
Total/NA	Prep	3010A			50 mL	50 mL	97577	09/28/20 07:00	WL8G	ECL 1
Total/NA	Analysis Instrumen	6010B t ID: ICP8		1			98065	09/29/20 11:11	ULPF	ECL 1
Total/NA	Analysis Instrumen	SM 2320B t ID: ManSciMantech	1	1	35 mL	35 mL	97663	09/25/20 20:24	UAPD	ECL 1
Total/NA	Analysis Instrumen	SM 2540C t ID: NOEQUIP		1	20 mL	20 mL	96197	09/21/20 20:29	WN6Y	ECL 1

Laboratory References:

ECL 1 = Eurofins Calscience LLC Lincoln, 7440 Lincoln Way, Garden Grove, CA 92841, TEL (714)895-5494

Client: Geosyntec Consultants, Inc. Project/Site: Burbank Airport Job ID: 570-38567-1

10

Laboratory: Eurofins Calscience LLC

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
California	State	2944	09-29-20

Method Summary

Client: Geosyntec Consultants, Inc. Project/Site: Burbank Airport

Method	Method Description	Protocol	Laboratory
300.0	Anions, Ion Chromatography	MCAWW	ECL 1
6010B	Metals (ICP)	SW846	ECL 1
SM 2320B	Alkalinity	SM	ECL 1
SM 2540C	Solids, Total Dissolved (TDS)	SM	ECL 1
3010A	Preparation, Total Metals	SW846	ECL 1

Protocol References:

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

ECL 1 = Eurofins Calscience LLC Lincoln, 7440 Lincoln Way, Garden Grove, CA 92841, TEL (714)895-5494

Sample Summary

Client: Geosyntec Consultants, Inc. Project/Site: Burbank Airport

570-38567-1 A-1-CW09 Water 09/16/20 09:08 09/16/20 16:49 570-38567-2 A-1-CW03R Water 09/16/20 10:57 09/16/20 16:49	Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
570-38567-2 A-1-CW03R Water 09/16/20 10:57 09/16/20 16:49	570-38567-1	A-1-CW09	Water	09/16/20 09:08	09/16/20 16:49	
	570-38567-2	A-1-CW03R	Water	09/16/20 10:57	09/16/20 16:49	

9/29/2020

eurofins					CHA	IN OF CUSTODY RECOR	.D 2
	Calscience				DATE:	9/16/20	3
7440 Lincoln Way, Garden Grove, CA 92841-1427 • (714) 8 For courier service / sample drop off information, contact us26		_570-3	8567 Chain of Cu	stody	PAGE:	L OF /	_ 4
LABORATORY CLIENT: GILDSYNTEC ADDRESS: 65 N. Raymond A CITY Pasadena TEL:	LP # 200			CLIENT PROJECT NAME / NUMBE BARBANK A PROJECT CONTACT		P.O. NO : WRZ693 (02A SAMPLER(S): (PRINT)	₽ 〕 5
Pasadence	<u>rvc 77200</u>		201103	Mital Des	ai	J. Wper	6
	E-MAIL:	e geory			REQUESTED ANA		7
TURNAROUND TIME (Rush surcharges may apply to any TAT not "	·				Please check box or fill in blan	<as needed.<="" td=""><td>- 9</td></as>	- 9
SAME DAY 24 HR 48 HR 1 COELT EDF GLOBAL ID:	72 HR 🗆 5 DAYS 🗙 ST	ANUARU	LOG CODE	C) rate- sov) rbunte rbunte			g
SPECIAL INSTRUCTIONS:		GW 3	ceived by: (Signature/	Attiliation)	D	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
Relinquished by: (Signature)		Re	ceived by: (Signature/	Affiliation)	D	ate: Time:	
			Hage/1961	o SCb		06/02/14 Revisio 9/29/20	

Client: Geosyntec Consultants, Inc.

Login Number: 38567 List Number: 1 Creator: Patel, Jayesh

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

List Source: Eurofins Calscience

🔅 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins Calscience LLC 7440 Lincoln Way Garden Grove, CA 92841 Tel: (714)895-5494

Laboratory Job ID: 570-38680-1

Client Project/Site: Burbank Airport (WR2693-02A) Revision: 1

For:

.....Links

Review your project results through

Total Access

Have a Question?

Ask-

The

www.eurofinsus.com/Env

Visit us at:

Expert

Geosyntec Consultants, Inc. 65 N. Raymond Avenue Suite 200 Pasadena, California 91103

Attn: Mital Desai

Authorized for release by: 10/5/2020 2:40:35 PM Stephen Nowak, Project Manager I (714)895-5494 Stephen.Nowak@eurofinset.com

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	9
QC Sample Results	10
QC Association Summary	21
Lab Chronicle	22
Certification Summary	24
Method Summary	25
Sample Summary	26
Chain of Custody	27
Receipt Checklists	28

Client: Geosyntec Consultants, Inc. Project/Site: Burbank Airport (WR2693-02A)

Qualifiers

Qualifiers		3
General Che	emistrv	
Qualifier	Qualifier Description	
H	Sample was prepped or analyzed beyond the specified holding time	
Glossary		5
Abbreviation	These commonly used abbreviations may or may not be present in this report.	6
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	0
CNF	Contains No Free Liquid	0
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	9
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	13
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEE	Toxicity Equivalent Eactor (Dioxin)	

TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Job ID: 570-38680-1

Laboratory: Eurofins Calscience LLC

Narrative

Job Narrative 570-38680-1

Comments

No additional comments.

Receipt

The samples were received on 9/17/2020 4:13 PM; the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 2.5° C.

Receipt Exceptions

The method requirement for no headspace was not met. The following volatile sample was analyzed with headspace in the sample container(s): IDW-200917 (570-38680-5).

GC/MS VOA

Method 8260B: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with analytical batch 570-97932.

Method 8260B: The following volatiles sample was diluted due to foaming at the time of purging during the original sample analysis: IDW-200917 (570-38680-5). Elevated reporting limits (RLs) are provided.

Method 8260B: The laboratory control sample (LCS) for analytical batch 570-97932 recovered outside control limits for the following analytes: Trichlorofluoromethane. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

HPLC/IC

Method 300.0: Due to the high concentration of Nitrate as N, the matrix spike / matrix spike duplicate (MS/MSD) for analytical batch 570-95155 could not be evaluated for accuracy and precision. The associated laboratory control sample (LCS) met acceptance criteria.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

Method 6010B: Due to the high concentration of Calcium, Magnesium, and Sodium, the matrix spike / matrix spike duplicate (MS/MSD) for preparation batch 570-97886 and analytical batch 570-98711 could not be evaluated for accuracy and precision. The associated laboratory control sample (LCS) met acceptance criteria.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

Method SM 2540C: The following samples were analyzed outside of analytical holding time due to analyst scheduling oversight: C-1-CW08 (570-38680-1), C-1-CW03 (570-38680-2), C-1-CW06 (570-38680-3) and B-6-CW10 (570-38680-4).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Job ID: 570-38680-1
Client Sample ID: C-1-CW08

Lab Sample ID: 570-38680-1

Lab Sample ID: 570-38680-2

Lab Sample ID: 570-38680-3

Analyte	Result Qualifie	er RL	Unit	Dil Fac D	Method	Prep Type
Chloride	49	1.0	mg/L	1	300.0	Total/NA
Nitrate as N	10	1.0	mg/L	10	300.0	Total/NA
Sulfate	77	1.0	mg/L	1	300.0	Total/NA
Calcium	101	2.00	mg/L	1	6010B	Total/NA
Magnesium	25.2	0.500	mg/L	1	6010B	Total/NA
Potassium	5.33	2.00	mg/L	1	6010B	Total/NA
Sodium	32.3	2.00	mg/L	1	6010B	Total/NA
Alkalinity, Total (As CaCO3)	265	5.00	mg/L	1	SM 2320B	Total/NA
Bicarbonate (as CaCO3)	265	5.00	mg/L	1	SM 2320B	Total/NA
Total Dissolved Solids	490 H	1.00	mg/L	1	SM 2540C	Total/NA

Client Sample ID: C-1-CW03

Analyte	Result Qualifier	RL	Unit	Dil Fac D	Method	Prep Type
Chloride	55	1.0	mg/L	1	300.0	Total/NA
Nitrate as N	14	1.0	mg/L	10	300.0	Total/NA
Sulfate	77	1.0	mg/L	1	300.0	Total/NA
Calcium	98.8	2.00	mg/L	1	6010B	Total/NA
Magnesium	25.1	0.500	mg/L	1	6010B	Total/NA
Potassium	5.41	2.00	mg/L	1	6010B	Total/NA
Sodium	31.2	2.00	mg/L	1	6010B	Total/NA
Alkalinity, Total (As CaCO3)	238	5.00	mg/L	1	SM 2320B	Total/NA
Bicarbonate (as CaCO3)	238	5.00	mg/L	1	SM 2320B	Total/NA
Total Dissolved Solids	530 H	1.00	mg/L	1	SM 2540C	Total/NA

Client Sample ID: C-1-CW06

Analyte	Result	Qualifier	RL	Unit	Dil Fac	D	Method	Prep Type
Chloride	22		1.0	mg/L	1	_	300.0	Total/NA
Nitrate as N	11		1.0	mg/L	10		300.0	Total/NA
Sulfate	43		1.0	mg/L	1		300.0	Total/NA
Calcium	96.3		2.00	mg/L	1		6010B	Total/NA
Magnesium	22.3		0.500	mg/L	1		6010B	Total/NA
Potassium	4.94		2.00	mg/L	1		6010B	Total/NA
Sodium	29.2		2.00	mg/L	1		6010B	Total/NA
Alkalinity, Total (As CaCO3)	282		5.00	mg/L	1		SM 2320B	Total/NA
Bicarbonate (as CaCO3)	282		5.00	mg/L	1		SM 2320B	Total/NA
Total Dissolved Solids	450	Η	1.00	mg/L	1		SM 2540C	Total/NA

Client Sample ID: B-6-CW10

Lab Sample ID: 570-38680-4

Analyte	Result Qualifier	RL	Unit	Dil Fac	D Method	Prep Type
Chloride	41	1.0	mg/L	1	300.0	Total/NA
Nitrate as N	5.6	0.10	mg/L	1	300.0	Total/NA
Sulfate	67	1.0	mg/L	1	300.0	Total/NA
Calcium	91.9	2.00	mg/L	1	6010B	Total/NA
Magnesium	23.9	0.500	mg/L	1	6010B	Total/NA
Potassium	5.25	2.00	mg/L	1	6010B	Total/NA
Sodium	31.3	2.00	mg/L	1	6010B	Total/NA
Alkalinity, Total (As CaCO3)	263	5.00	mg/L	1	SM 2320B	Total/NA
Bicarbonate (as CaCO3)	263	5.00	mg/L	1	SM 2320B	Total/NA
Total Dissolved Solids	480 H	1.00	mg/L	1	SM 2540C	Total/NA

This Detection Summary does not include radiochemical test results.

Job ID: 570-38680-1

Method: 300.0 - Anions, Ion Chromatography

Client Sample ID: C-1-CW08						Lab Sa	mple ID: 570-3	
Date Collected: 09/17/20 08:29							Matrix	: Water
Date Received: 09/17/20 16:13								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	49		1.0	mg/L			09/17/20 17:36	1
Nitrate as N	10		1.0	mg/L			09/18/20 10:33	10
Sulfate	77		1.0	mg/L			09/17/20 17:36	1
Client Sample ID: C-1-CW03						Lab Sa	mple ID: 570-3	8680-2
Date Collected: 09/17/20 10:21							· · ·	: Water
Date Received: 09/17/20 16:13								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	55		1.0	mg/L			09/17/20 17:56	1
Nitrate as N	14		1.0	mg/L			09/18/20 10:53	10
Sulfate	77		1.0	mg/L			09/17/20 17:56	1
Client Sample ID: C-1-CW06						Lab Sa	mple ID: 570-3	8680-3
Date Collected: 09/17/20 11:41								: Water
Date Received: 09/17/20 16:13								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	22		1.0	mg/L			09/17/20 18:17	1
Nitrate as N	11		1.0	mg/L			09/18/20 11:13	10
Sulfate	43		1.0	mg/L			09/17/20 18:17	1
Client Sample ID: B-6-CW10						Lab Sa	mple ID: 570-3	8680-4
Date Collected: 09/17/20 13:28							· · ·	: Water
Date Received: 09/17/20 16:13								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	41		1.0	mg/L			09/17/20 19:18	1
Nitrate as N	5.6		0.10	mg/L			09/17/20 19:18	1
Sulfate	67		1.0	mg/L			09/17/20 19:18	1

Client Sample Results

Method: 6010B - Metals (ICP)

Job ID: 570-38680-1

Lab Sample ID: 570-38680-1

Client Sample ID: C-1-CW08 Date Collected: 09/17/20 08:29 Date Received: 09/17/20 16:13						Lab San	nple ID: 570-3 Matrix	8680-1 : Water
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	101		2.00	mg/L		09/29/20 08:00	09/30/20 20:25	1
Magnesium	25.2		0.500	mg/L		09/29/20 08:00	09/30/20 20:25	1
Potassium	5.33		2.00	mg/L		09/29/20 08:00	09/30/20 20:25	1
Sodium	32.3		2.00	mg/L		09/29/20 08:00	09/30/20 20:25	1
Client Sample ID: C-1-CW03						Lab San	nple ID: 570-3	8680-2
Date Collected: 09/17/20 10:21 Date Received: 09/17/20 16:13							Matrix	: Water
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	98.8		2.00	mg/L		09/29/20 08:00	09/30/20 20:28	1
Magnesium	25.1		0.500	mg/L		09/29/20 08:00	09/30/20 20:28	1
Potassium	5.41		2.00	mg/L		09/29/20 08:00	09/30/20 20:28	1
Sodium	31.2		2.00	mg/L		09/29/20 08:00	09/30/20 20:28	1
Client Sample ID: C-1-CW06						Lab San	nple ID: 570-3	8680-3
Client Sample ID: C-1-CW06 Date Collected: 09/17/20 11:41						Lab San	· ·	8680-3 : Water
						Lab San	· ·	
Date Collected: 09/17/20 11:41	Result	Qualifier	RL	Unit	D	Lab San Prepared	· ·	
Date Collected: 09/17/20 11:41 Date Received: 09/17/20 16:13	Result 96.3	Qualifier	RL 2.00	Unit mg/L	D		Matrix	: Water
Date Collected: 09/17/20 11:41 Date Received: 09/17/20 16:13 Analyte		Qualifier			D	Prepared	Matrix Analyzed	: Water Dil Fac
Date Collected: 09/17/20 11:41 Date Received: 09/17/20 16:13 Analyte Calcium	96.3	Qualifier	2.00	mg/L	<u>D</u>	Prepared 09/29/20 08:00	Matrix Analyzed 09/30/20 20:30	: Water Dil Fac
Date Collected: 09/17/20 11:41 Date Received: 09/17/20 16:13 Analyte Calcium Magnesium	96.3 22.3	Qualifier	2.00 0.500	mg/L mg/L	<u> </u>	Prepared 09/29/20 08:00 09/29/20 08:00	Matrix Analyzed 09/30/20 20:30 09/30/20 20:30	: Water Dil Fac
Date Collected: 09/17/20 11:41 Date Received: 09/17/20 16:13 Analyte Calcium Magnesium Potassium	96.3 22.3 4.94	Qualifier	2.00 0.500 2.00	mg/L mg/L mg/L	<u>D</u>	Prepared 09/29/20 08:00 09/29/20 08:00 09/29/20 08:00 09/29/20 08:00	Matrix Analyzed 09/30/20 20:30 09/30/20 20:30 09/30/20 20:30	: Water Dil Fac 1 1 1 1
Date Collected: 09/17/20 11:41 Date Received: 09/17/20 16:13 Analyte Calcium Magnesium Potassium Sodium	96.3 22.3 4.94	Qualifier	2.00 0.500 2.00	mg/L mg/L mg/L	<u> </u>	Prepared 09/29/20 08:00 09/29/20 08:00 09/29/20 08:00 09/29/20 08:00	Matrix <u>Analyzed</u> 09/30/20 20:30 09/30/20 20:30 09/30/20 20:30 09/30/20 20:30 nple ID: 570-3	: Water Dil Fac 1 1 1 1
Date Collected: 09/17/20 11:41 Date Received: 09/17/20 16:13 Analyte Calcium Magnesium Potassium Sodium Client Sample ID: B-6-CW10	96.3 22.3 4.94	Qualifier	2.00 0.500 2.00	mg/L mg/L mg/L	<u>D</u>	Prepared 09/29/20 08:00 09/29/20 08:00 09/29/20 08:00 09/29/20 08:00	Matrix <u>Analyzed</u> 09/30/20 20:30 09/30/20 20:30 09/30/20 20:30 09/30/20 20:30 nple ID: 570-3	: Water Dil Fac 1 1 1 1 88680-4
Date Collected: 09/17/20 11:41 Date Received: 09/17/20 16:13 Analyte Calcium Magnesium Potassium Sodium Client Sample ID: B-6-CW10 Date Collected: 09/17/20 13:28	96.3 22.3 4.94 29.2	Qualifier	2.00 0.500 2.00	mg/L mg/L mg/L	<u>D</u>	Prepared 09/29/20 08:00 09/29/20 08:00 09/29/20 08:00 09/29/20 08:00	Matrix <u>Analyzed</u> 09/30/20 20:30 09/30/20 20:30 09/30/20 20:30 09/30/20 20:30 nple ID: 570-3	: Water Dil Fac 1 1 1 1 88680-4
Date Collected: 09/17/20 11:41 Date Received: 09/17/20 16:13 Analyte Calcium Magnesium Potassium Sodium Client Sample ID: B-6-CW10 Date Collected: 09/17/20 13:28 Date Received: 09/17/20 16:13	96.3 22.3 4.94 29.2		2.00 0.500 2.00 2.00	mg/L mg/L mg/L mg/L		Prepared 09/29/20 08:00 09/29/20 08:00 09/29/20 08:00 09/29/20 08:00 Lab San	Matrix <u>Analyzed</u> 09/30/20 20:30 09/30/20 20:30 09/30/20 20:30 09/30/20 20:30 nple ID: 570-3 Matrix	: Water Dil Fac 1 1 1 1 88680-4 : Water
Date Collected: 09/17/20 11:41 Date Received: 09/17/20 16:13 Analyte Calcium Magnesium Potassium Sodium Client Sample ID: B-6-CW10 Date Collected: 09/17/20 13:28 Date Received: 09/17/20 16:13 Analyte	96.3 22.3 4.94 29.2 Result		2.00 0.500 2.00 2.00	mg/L mg/L mg/L mg/L		Prepared 09/29/20 08:00 09/29/20 08:00 09/29/20 08:00 09/29/20 08:00 Lab San Prepared	Matrix <u>Analyzed</u> 09/30/20 20:30 09/30/20 20:30 09/30/20 20:30 09/30/20 20:30 nple ID: 570-3 Matrix <u>Analyzed</u>	: Water Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1 1
Date Collected: 09/17/20 11:41 Date Received: 09/17/20 16:13 Analyte Calcium Magnesium Potassium Sodium Client Sample ID: B-6-CW10 Date Collected: 09/17/20 13:28 Date Received: 09/17/20 16:13 Analyte Calcium	96.3 22.3 4.94 29.2 Result 91.9		2.00 0.500 2.00 2.00 RL 2.00	mg/L mg/L mg/L mg/L Unit mg/L		Prepared 09/29/20 08:00 09/29/20 08:00 09/29/20 08:00 09/29/20 08:00 Lab San Prepared 09/29/20 08:00	Matrix <u>Analyzed</u> 09/30/20 20:30 09/30/20 20:30 09/30/20 20:30 09/30/20 20:30 nple ID: 570-3 Matrix <u>Analyzed</u> 09/30/20 20:32	: Water Dil Fac 1 1 1 1 88680-4 : Water Dil Fac 1

Client Sample Results

General Chemistry

Lab Sample ID: 570-38680-1

Client Sample ID: C-1-CW08 Date Collected: 09/17/20 08:29 Date Received: 09/17/20 16:13						Lab Sa	mple ID: 570-3 Matrix	8680-1 : Water
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity, Total (As CaCO3)	265		5.00	mg/L		•	09/25/20 20:31	1
Bicarbonate (as CaCO3)	265		5.00	mg/L			09/25/20 20:31	1
Carbonate (as CaCO3)	ND		5.00	mg/L			09/25/20 20:31	1
Hydroxide (as CaCO3)	ND		5.00	mg/L			09/25/20 20:31	1
Total Dissolved Solids	490	н	1.00	mg/L			09/28/20 21:44	1
Client Sample ID: C-1-CW03						Lab Sa	mple ID: 570-3	8680-2
Date Collected: 09/17/20 10:21							Matrix	: Water
Date Received: 09/17/20 16:13 Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity, Total (As CaCO3)	238		5.00	mg/L			09/25/20 20:37	1
Bicarbonate (as CaCO3)	238		5.00	mg/L			09/25/20 20:37	1
Carbonate (as CaCO3)	ND		5.00	mg/L			09/25/20 20:37	1
Hydroxide (as CaCO3)	ND		5.00	mg/L			09/25/20 20:37	1
Total Dissolved Solids	530	н	1.00	mg/L			09/28/20 21:44	1
_								
Client Sample ID: C-1-CW06						Lab Sa	mple ID: 570-3	8680-3
Client Sample ID: C-1-CW06 Date Collected: 09/17/20 11:41						Lab Sa	mple ID: 570-3 Matrix	8680-3 : Water
						Lab Sa	· · ·	
Date Collected: 09/17/20 11:41	Result	Qualifier	RL	Unit	D	Lab Sa Prepared	· · ·	
Date Collected: 09/17/20 11:41 Date Received: 09/17/20 16:13	Result 282	Qualifier	RL 5.00	Unit mg/L	D		Matrix	: Water
Date Collected: 09/17/20 11:41 Date Received: 09/17/20 16:13 Analyte		Qualifier			<u> </u>		Matrix Analyzed	: Water
Date Collected: 09/17/20 11:41 Date Received: 09/17/20 16:13 Analyte Alkalinity, Total (As CaCO3)	282	Qualifier	5.00	mg/L	<u>D</u>		Matrix Analyzed 09/25/20 20:44	: Water Dil Fac
Date Collected: 09/17/20 11:41 Date Received: 09/17/20 16:13 Analyte Alkalinity, Total (As CaCO3) Bicarbonate (as CaCO3)	282 282	Qualifier	5.00 5.00	mg/L mg/L	<u> </u>		Matrix <u>Analyzed</u> 09/25/20 20:44 09/25/20 20:44	: Water Dil Fac
Date Collected: 09/17/20 11:41 Date Received: 09/17/20 16:13 Analyte Alkalinity, Total (As CaCO3) Bicarbonate (as CaCO3) Carbonate (as CaCO3)	282 282 ND		5.00 5.00 5.00	mg/L mg/L mg/L	<u> </u>		Matrix Analyzed 09/25/20 20:44 09/25/20 20:44 09/25/20 20:44	: Water Dil Fac 1 1 1
Date Collected: 09/17/20 11:41 Date Received: 09/17/20 16:13 Analyte Alkalinity, Total (As CaCO3) Bicarbonate (as CaCO3) Carbonate (as CaCO3) Hydroxide (as CaCO3)	282 282 ND ND		5.00 5.00 5.00 5.00	mg/L mg/L mg/L mg/L	<u> </u>	Prepared	Matrix Analyzed 09/25/20 20:44 09/25/20 20:44 09/25/20 20:44 09/25/20 20:44	: Water
Date Collected: 09/17/20 11:41 Date Received: 09/17/20 16:13 Analyte Alkalinity, Total (As CaCO3) Bicarbonate (as CaCO3) Carbonate (as CaCO3) Hydroxide (as CaCO3) Total Dissolved Solids	282 282 ND ND		5.00 5.00 5.00 5.00	mg/L mg/L mg/L mg/L	<u> </u>	Prepared	Matrix <u>Analyzed</u> 09/25/20 20:44 09/25/20 20:44 09/25/20 20:44 09/25/20 20:44 09/28/20 21:44 mple ID: 570-3	: Water
Date Collected: 09/17/20 11:41 Date Received: 09/17/20 16:13 Analyte Alkalinity, Total (As CaCO3) Bicarbonate (as CaCO3) Carbonate (as CaCO3) Hydroxide (as CaCO3) Total Dissolved Solids Client Sample ID: B-6-CW10	282 282 ND ND		5.00 5.00 5.00 5.00	mg/L mg/L mg/L mg/L	<u> </u>	Prepared	Matrix <u>Analyzed</u> 09/25/20 20:44 09/25/20 20:44 09/25/20 20:44 09/25/20 20:44 09/28/20 21:44 mple ID: 570-3	: Water Dil Fac 1 1 1 1 3 88680-4
Date Collected: 09/17/20 11:41 Date Received: 09/17/20 16:13 Analyte Alkalinity, Total (As CaCO3) Bicarbonate (as CaCO3) Carbonate (as CaCO3) Hydroxide (as CaCO3) Total Dissolved Solids Client Sample ID: B-6-CW10 Date Collected: 09/17/20 13:28	282 282 ND ND 450		5.00 5.00 5.00 5.00	mg/L mg/L mg/L mg/L	D	Prepared	Matrix <u>Analyzed</u> 09/25/20 20:44 09/25/20 20:44 09/25/20 20:44 09/25/20 20:44 09/28/20 21:44 mple ID: 570-3	: Water Dil Fac 1 1 1 1 3 88680-4
Date Collected: 09/17/20 11:41 Date Received: 09/17/20 16:13 Analyte Alkalinity, Total (As CaCO3) Bicarbonate (as CaCO3) Carbonate (as CaCO3) Hydroxide (as CaCO3) Total Dissolved Solids Client Sample ID: B-6-CW10 Date Collected: 09/17/20 13:28 Date Received: 09/17/20 16:13	282 282 ND ND 450	н	5.00 5.00 5.00 5.00 1.00	mg/L mg/L mg/L mg/L		Prepared Lab Sa	Matrix <u>Analyzed</u> 09/25/20 20:44 09/25/20 20:44 09/25/20 20:44 09/25/20 21:44 mple ID: 570-3 Matrix	: Water Dil Fac 1 1 1 1 1 38680-4 : Water
Date Collected: 09/17/20 11:41 Date Received: 09/17/20 16:13 Analyte Alkalinity, Total (As CaCO3) Bicarbonate (as CaCO3) Carbonate (as CaCO3) Hydroxide (as CaCO3) Total Dissolved Solids Client Sample ID: B-6-CW10 Date Collected: 09/17/20 13:28 Date Received: 09/17/20 16:13 Analyte	282 282 ND ND 450 Result	н	5.00 5.00 5.00 1.00	mg/L mg/L mg/L mg/L mg/L		Prepared Lab Sa	Matrix <u>Analyzed</u> 09/25/20 20:44 09/25/20 20:44 09/25/20 20:44 09/28/20 21:44 mple ID: 570-3 Matrix <u>Analyzed</u>	: Water Dil Fac 1 1 1 1 1 38680-4 : Water Dil Fac
Date Collected: 09/17/20 11:41 Date Received: 09/17/20 16:13 Analyte Alkalinity, Total (As CaCO3) Bicarbonate (as CaCO3) Carbonate (as CaCO3) Hydroxide (as CaCO3) Total Dissolved Solids Client Sample ID: B-6-CW10 Date Collected: 09/17/20 13:28 Date Received: 09/17/20 16:13 Analyte Alkalinity, Total (As CaCO3)	282 282 ND ND 450 Result 263	н	5.00 5.00 5.00 1.00 RL 5.00	mg/L mg/L mg/L mg/L mg/L Unit mg/L		Prepared Lab Sa	Matrix Analyzed 09/25/20 20:44 09/25/20 20:44 09/25/20 20:44 09/28/20 21:44 mple ID: 570-3 Matrix Analyzed 09/25/20 20:50	: Water Dil Fac 1 1 1 1 1 38680-4 : Water Dil Fac 1
Date Collected: 09/17/20 11:41 Date Received: 09/17/20 16:13 Analyte Alkalinity, Total (As CaCO3) Bicarbonate (as CaCO3) Carbonate (as CaCO3) Hydroxide (as CaCO3) Total Dissolved Solids Client Sample ID: B-6-CW10 Date Collected: 09/17/20 13:28 Date Received: 09/17/20 16:13 Analyte Alkalinity, Total (As CaCO3) Bicarbonate (as CaCO3)	282 282 ND ND 450 Result 263 263	н	5.00 5.00 5.00 1.00 RL 5.00 5.00	mg/L mg/L mg/L mg/L mg/L mg/L mg/L		Prepared Lab Sa	Matrix Analyzed 09/25/20 20:44 09/25/20 20:44 09/25/20 20:44 09/25/20 20:44 09/28/20 21:44 mple ID: 570-3 Matrix Analyzed 09/25/20 20:50 09/25/20 20:50	: Water Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1 1

Eurofins Calscience LLC

5

6

Date Received. 03/11/20 10.13	•							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity, Total (As CaCO3)	263		5.00	mg/L			09/25/20 20:50	1
Bicarbonate (as CaCO3)	263		5.00	mg/L			09/25/20 20:50	1
Carbonate (as CaCO3)	ND		5.00	mg/L			09/25/20 20:50	1
Hydroxide (as CaCO3)	ND		5.00	mg/L			09/25/20 20:50	1
Total Dissolved Solids	480	н	1.00	mg/L			09/28/20 21:44	1

Method: 8260B - Volatile Organic Compounds (GC/MS) Matrix: Water

			Pe	ercent Surro	ogate Reco
		DCA	BFB	DBFM	TOL
Lab Sample ID	Client Sample ID	(80-129)	(77-120)	(80-128)	(80-120)
570-38680-5	IDW-200917	116	96	106	101
LCS 570-97932/3	Lab Control Sample	106	101	101	103
LCSD 570-97932/4	Lab Control Sample Dup	108	101	100	103
MB 570-97932/8	Method Blank	114	97	103	101

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Prep Type: Total/NA

5

8

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 570-97932/8 Matrix: Water Analysis Batch: 97932

Client Sample ID: Method Blank Prep Type: Total/NA

Analysis Batch: 97932								
-	MB	МВ						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		2.0	ug/L			09/29/20 12:30	1
1,1,1-Trichloroethane	ND		1.0	ug/L			09/29/20 12:30	1
1,1,2,2-Tetrachloroethane	ND		1.0	ug/L			09/29/20 12:30	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		10	ug/L			09/29/20 12:30	1
1,1,2-Trichloroethane	ND		1.0	ug/L			09/29/20 12:30	1
1,1-Dichloroethane	ND		1.0	ug/L			09/29/20 12:30	1
1,1-Dichloroethene	ND		1.0	ug/L			09/29/20 12:30	1
1,1-Dichloropropene	ND		1.0	ug/L			09/29/20 12:30	1
1,2,3-Trichlorobenzene	ND		1.0	ug/L			09/29/20 12:30	1
1,2,3-Trichloropropane	ND		5.0	ug/L			09/29/20 12:30	1
1,2,4-Trichlorobenzene	ND		1.0	ug/L			09/29/20 12:30	1
1,2,4-Trimethylbenzene	ND		1.0	ug/L			09/29/20 12:30	1
1,2-Dibromo-3-Chloropropane	ND		10	ug/L			09/29/20 12:30	1
1,2-Dibromoethane	ND		1.0	ug/L			09/29/20 12:30	1
1,2-Dichlorobenzene	ND		1.0	ug/L			09/29/20 12:30	1
1,2-Dichloroethane	ND		0.50	ug/L			09/29/20 12:30	1
1,2-Dichloropropane	ND		1.0	ug/L			09/29/20 12:30	1
1,3,5-Trimethylbenzene	ND		1.0	ug/L			09/29/20 12:30	1
1.3-Dichlorobenzene	ND		1.0	ug/L			09/29/20 12:30	1
1,3-Dichloropropane	ND		1.0	ug/L			09/29/20 12:30	1
1,4-Dichlorobenzene	ND		1.0	ug/L			09/29/20 12:30	1
2,2-Dichloropropane	ND		1.0	ug/L			09/29/20 12:30	
2-Butanone	ND		20	ug/L			09/29/20 12:30	1
2-Chlorotoluene	ND		1.0	ug/L			09/29/20 12:30	1
2-Hexanone	ND		10	ug/L			09/29/20 12:30	
4-Chlorotoluene	ND		1.0	ug/L			09/29/20 12:30	1
4-Methyl-2-pentanone	ND		10	ug/L			09/29/20 12:30	1
Acetone	ND		20	ug/L			09/29/20 12:30	
Benzene	ND		0.50	ug/L			09/29/20 12:30	1
Bromobenzene	ND		1.0	ug/L			09/29/20 12:30	1
Bromochloromethane	ND		2.0	ug/L			09/29/20 12:30	
Bromodichloromethane	ND		1.0	ug/L			09/29/20 12:30	1
Bromoform	ND		5.0	ug/L			09/29/20 12:30	1
Bromomethane	ND		50	ug/L			09/29/20 12:30	
cis-1,2-Dichloroethene	ND		1.0	ug/L			09/29/20 12:30	1
cis-1,3-Dichloropropene	ND		0.50	ug/L			09/29/20 12:30	1
Carbon disulfide	ND		10	ug/L			09/29/20 12:30	1
Carbon tetrachloride	ND		0.50	ug/L			09/29/20 12:30	1
Chlorobenzene	ND		1.0	ug/L			09/29/20 12:30	1
Chloroethane	ND		5.0	ug/L			09/29/20 12:30	
Chloroform	ND		1.0	ug/L			09/29/20 12:30	1
Chloromethane	ND		10	ug/L			09/29/20 12:30	1
Dibromochloromethane	ND		2.0	.			09/29/20 12:30	· · · · · · · 1
Dibromomethane	ND		1.0	ug/L ug/L			09/29/20 12:30	1
Dichlorodifluoromethane	ND		5.0	-			09/29/20 12:30	1
				ug/L			09/29/20 12:30	
Ethylbenzene Isopropylbenzene	ND ND		1.0 1.0	ug/L			09/29/20 12:30	1
	ND		1.0	ug/L			09/29/20 12:30	
Methylene Chloride	IND		10	ug/L			09/29/20 12.30	1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

5

8

13

Lab Sample ID: MB 570-97932/8 Matrix: Water

Client Sample ID: Method Blank Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analysis Batch: 97932

Analysis Datch. 57552								
		MB			_			
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl-t-Butyl Ether (MTBE)	ND		1.0	ug/L			09/29/20 12:30	1
Naphthalene	ND		10	ug/L			09/29/20 12:30	1
n-Butylbenzene	ND		1.0	ug/L			09/29/20 12:30	1
N-Propylbenzene	ND		1.0	ug/L			09/29/20 12:30	1
o-Xylene	ND		1.0	ug/L			09/29/20 12:30	1
m,p-Xylene	ND		2.0	ug/L			09/29/20 12:30	1
p-Isopropyltoluene	ND		1.0	ug/L			09/29/20 12:30	1
sec-Butylbenzene	ND		1.0	ug/L			09/29/20 12:30	1
Styrene	ND		1.0	ug/L			09/29/20 12:30	1
trans-1,2-Dichloroethene	ND		1.0	ug/L			09/29/20 12:30	1
trans-1,3-Dichloropropene	ND		0.50	ug/L			09/29/20 12:30	1
tert-Butylbenzene	ND		1.0	ug/L			09/29/20 12:30	1
Tetrachloroethene	ND		1.0	ug/L			09/29/20 12:30	1
Toluene	ND		1.0	ug/L			09/29/20 12:30	1
Trichloroethene	ND		1.0	ug/L			09/29/20 12:30	1
Trichlorofluoromethane	ND		10	ug/L			09/29/20 12:30	1
Vinyl acetate	ND		10	ug/L			09/29/20 12:30	1
Vinyl chloride	ND		0.50	ug/L			09/29/20 12:30	1
	МВ	МВ						

	MB	МВ					
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac	
1,2-Dichloroethane-d4 (Surr)			80 - 129		09/29/20 12:30	1	
4-Bromofluorobenzene (Surr)	97		77 - 120		09/29/20 12:30	1	
Dibromofluoromethane (Surr)	103		80 - 128		09/29/20 12:30	1	
Toluene-d8 (Surr)	101		80 - 120		09/29/20 12:30	1	

Lab Sample ID: LCS 570-97932/3 **Matrix: Water** Analysis Batch: 97932

Analysis Datch. 97952	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1,2-Tetrachloroethane	50.0	49.40		ug/L		99	80 - 126
1,1,1-Trichloroethane	50.0	50.12		ug/L		100	73 - 127
1,1,2,2-Tetrachloroethane	50.0	47.54		ug/L		95	76 - 120
1,1,2-Trichloro-1,2,2-trifluoroetha	50.0	49.38		ug/L		99	53 - 155
ne							
1,1,2-Trichloroethane	50.0	51.46		ug/L		103	80 - 120
1,1-Dichloroethane	50.0	54.53		ug/L		109	73 - 127
1,1-Dichloroethene	50.0	56.76		ug/L		114	64 - 136
1,1-Dichloropropene	50.0	57.95		ug/L		116	73 - 127
1,2,3-Trichlorobenzene	50.0	54.87		ug/L		110	76 - 130
1,2,3-Trichloropropane	50.0	44.13		ug/L		88	77 - 125
1,2,4-Trichlorobenzene	50.0	55.26		ug/L		111	74 ₋ 134
1,2,4-Trimethylbenzene	50.0	53.77		ug/L		108	80 - 123
1,2-Dibromo-3-Chloropropane	50.0	43.38		ug/L		87	68 - 128
1,2-Dibromoethane	50.0	49.37		ug/L		99	80 - 120
1,2-Dichlorobenzene	50.0	52.38		ug/L		105	80 - 120
1,2-Dichloroethane	50.0	56.83		ug/L		114	75 - 123
1,2-Dichloropropane	50.0	56.11		ug/L		112	80 - 120
1,3,5-Trimethylbenzene	50.0	53.91		ug/L		108	80 - 126

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 570-97932/3 Matrix: Water

Analysis Batch: 97932

Analyte	Spike Added	_	LCS Qualifier Unit	D %Rec	%Rec. Limits	
I,3-Dichlorobenzene	50.0	52.97	ug/L		80 - 120	
,3-Dichloropropane	50.0	50.74	ug/L	101	80 - 120	
,4-Dichlorobenzene	50.0	53.31	ug/L	107	80 - 120	
2,2-Dichloropropane	50.0	37.22	ug/L	74	53 - 155	
-Butanone	50.0	51.75	ug/L	103	53 - 137	
2-Chlorotoluene	50.0	54.55	ug/L	109	80 - 121	
-Hexanone	50.0	50.36	ug/L	101	59 - 131	
-Chlorotoluene	50.0	55.45	ug/L	111	80 - 120	
-Methyl-2-pentanone	50.0	46.41	ug/L	93	68 - 122	
cetone	50.0	44.63	ug/L	89	50 ₋ 150	
Benzene	50.0	52.32	ug/L	105	78 - 120	
Bromobenzene	50.0	52.73	ug/L	105	80 - 120	
Bromochloromethane	50.0	51.89	ug/L	104	77 - 125	
Bromodichloromethane	50.0	54.71	ug/L	109	80 - 125	
Bromoform	50.0	50.18	ug/L	100	68 - 128	
Bromomethane	50.0	50.35	ug/L	101	50 - 150	
is-1,2-Dichloroethene	50.0	52.68	ug/L	105	78 - 120	
is-1,3-Dichloropropene	50.0	47.76	ug/L	96	80 - 129	
arbon disulfide	50.0	53.39	ug/L	107	50 - 150	
arbon tetrachloride	50.0	53.56	ug/L	107	67 - 139	
hlorobenzene	50.0	53.74	ug/L	107	80 - 120	
hloroethane	50.0	51.05	ug/L	102	64 - 130	
chloroform	50.0	54.26	ug/L	109	77 - 120	
chloromethane	50.0	55.61	ug/L	111	56 - 128	
ibromochloromethane	50.0	52.92	ug/L	106	77 - 125	
Dibromomethane	50.0	54.26	ug/L	109	80 - 120	
Dichlorodifluoromethane	50.0	63.47	ug/L	127	50 - 150	
thylbenzene	50.0	55.06	ug/L	110	80 - 120	
sopropylbenzene	50.0	55.60	ug/L	111	80 - 126	
lethylene Chloride	50.0	49.62	ug/L	99	73 - 127	
/ethyl-t-Butyl Ether (MTBE)	50.0	42.37	ug/L	85	77 - 120	
laphthalene	50.0	48.42	ug/L	97	64 - 136	
-Butylbenzene	50.0	55.15	ug/L	110	78 - 132	
I-Propylbenzene	50.0	56.87	ug/L	114	80 - 125	
-Xylene	50.0	54.13	ug/L	108	80 - 125	
n,p-Xylene	100	111.2	ug/L	111	80 - 125	
Isopropyltoluene	50.0	53.48	ug/L	107	80 - 129	
ec-Butylbenzene	50.0	55.51	ug/L	111	80 - 125	
tyrene	50.0	53.38	ug/L	107	80 - 122	
ans-1,2-Dichloroethene	50.0	52.05	ug/L	104	70 ₋ 130	
ans-1,3-Dichloropropene	50.0	46.05	ug/L	92	78 - 132	
ert-Butylbenzene	50.0	52.50	ug/L	105	80 - 125	
etrachloroethene	50.0	57.44	ug/L	115	54 ₋ 144	
oluene	50.0	54.25	ug/L	109	80 - 122	
richloroethene	50.0	56.23	ug/L	112	77 - 125	
richlorofluoromethane	50.0	71.20		142	69 - 141	
/inyl acetate	50.0	43.74	ug/L	87	50 - 150	
/inyl chloride	50.0	50.15	ug/L	100	63 - 135	

Prep Type: Total/NA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 570-97932/3 Matrix: Water Analysis Batch: 97932

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	106		80 - 129
4-Bromofluorobenzene (Surr)	101		77 - 120
Dibromofluoromethane (Surr)	101		80 - 128
Toluene-d8 (Surr)	103		80 - 120

Lab Sample ID: LCSD 570-97932/4 Matrix: Water Analysis Batch: 97932

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Analysis Balch: 97932	Spike	LCSD	1.050				%Rec.		RPD
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1,2-Tetrachloroethane		47.41		ug/L		95	80 - 126	4	30
1,1,1-Trichloroethane	50.0	47.95		ug/L		95 96	73 - 127	4	30
1,1,2,2-Tetrachloroethane	50.0	49.29		ug/L		99	76 - 120	4	28
1,1,2-Trichloro-1,2,2-trifluoroetha	50.0	44.67		ug/L		89	53 - 155	10	30
ne	50.0			ug/L		00	00 - 100	10	00
1,1,2-Trichloroethane	50.0	50.14		ug/L		100	80 - 120	3	30
1,1-Dichloroethane	50.0	51.57		ug/L		103	73 - 127	6	30
1,1-Dichloroethene	50.0	54.48		ug/L		109	64 - 136	4	30
1,1-Dichloropropene	50.0	53.59		ug/L		107	73 - 127	8	30
1,2,3-Trichlorobenzene	50.0	53.94		ug/L		108	76 - 130	2	30
1,2,3-Trichloropropane	50.0	46.61		ug/L		93	77 - 125	5	30
1,2,4-Trichlorobenzene	50.0	52.90		ug/L		106	74 - 134	4	30
1,2,4-Trimethylbenzene	50.0	50.27		ug/L		101	80 - 123	7	30
1,2-Dibromo-3-Chloropropane	50.0	46.55		ug/L		93	68 - 128	7	30
1,2-Dibromoethane	50.0	48.71		ug/L		97	80 - 120	1	30
1,2-Dichlorobenzene	50.0	50.01		ug/L		100	80 - 120	5	20
1,2-Dichloroethane	50.0	54.85		ug/L		110	75 - 123	4	24
1,2-Dichloropropane	50.0	53.50		ug/L		107	80 - 120	5	20
1,3,5-Trimethylbenzene	50.0	50.42		ug/L		101	80 - 126	7	20
1,3-Dichlorobenzene	50.0	49.73		ug/L		99	80 - 120	6	20
1,3-Dichloropropane	50.0	49.64		ug/L		99	80 - 120	2	20
1,4-Dichlorobenzene	50.0	50.46		ug/L		101	80 - 120	5	20
2,2-Dichloropropane	50.0	35.47		ug/L		71	53 - 155	5	30
2-Butanone	50.0	55.36		ug/L		111	53 - 137	7	30
2-Chlorotoluene	50.0	51.39		ug/L		103	80 - 121	6	20
2-Hexanone	50.0	54.05		ug/L		108	59 - 131	7	30
4-Chlorotoluene	50.0	51.94		ug/L		104	80 - 120	7	20
4-Methyl-2-pentanone	50.0	49.58		ug/L		99	68 - 122	7	30
Acetone	50.0	48.58		ug/L		97	50 - 150	8	30
Benzene	50.0	49.75		ug/L		99	78 - 120	5	21
Bromobenzene	50.0	50.82		ug/L		102	80 - 120	4	20
Bromochloromethane	50.0	50.74		ug/L		101	77 - 125	2	22
Bromodichloromethane	50.0	53.05		ug/L		106	80 - 125	3	20
Bromoform	50.0	50.13		ug/L		100	68 - 128	0	30
Bromomethane	50.0	47.04	J	ug/L		94	50 - 150	7	30
cis-1,2-Dichloroethene	50.0	50.61		ug/L		101	78 - 120	4	23
cis-1,3-Dichloropropene	50.0	45.93		ug/L		92	80 - 129	4	21
Carbon disulfide	50.0	51.33		ug/L		103	50 - 150	4	30
Carbon tetrachloride	50.0	50.19		ug/L		100	67 _ 139	7	30

Eurofins Calscience LLC

5

8

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 570-97932/4 Matrix: Water

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Analysis Batch: 97932									Prep ly		
			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Chlorobenzene			50.0	50.74		ug/L		101	80 - 120	6	20
Chloroethane			50.0	47.99		ug/L		96	64 - 130	6	30
Chloroform			50.0	52.03		ug/L		104	77 - 120	4	23
Chloromethane			50.0	61.89		ug/L		124	56 - 128	11	30
Dibromochloromethane			50.0	51.53		ug/L		103	77 - 125	3	21
Dibromomethane			50.0	53.16		ug/L		106	80 - 120	2	20
Dichlorodifluoromethane			50.0	64.22		ug/L		128	50 - 150	1	30
Ethylbenzene			50.0	51.28		ug/L		103	80 - 120	7	20
Isopropylbenzene			50.0	51.85		ug/L		104	80 - 126	7	20
Methylene Chloride			50.0	49.10		ug/L		98	73 - 127	1	25
Methyl-t-Butyl Ether (MTBE)			50.0	42.59		ug/L		85	77 - 120	1	24
Naphthalene			50.0	50.15		ug/L		100	64 - 136	4	30
n-Butylbenzene			50.0	50.64		ug/L		101	78 - 132	9	23
N-Propylbenzene			50.0	52.67		ug/L		105	80 - 125	8	20
o-Xylene			50.0	51.31		ug/L		103	80 - 125	5	20
m,p-Xylene			100	103.7		ug/L		104	80 - 125	7	30
p-Isopropyltoluene			50.0	49.04		ug/L		98	80 - 129	9	20
sec-Butylbenzene			50.0	50.81		ug/L		102	80 - 125	9	20
Styrene			50.0	50.68		ug/L		101	80 - 122	5	20
trans-1,2-Dichloroethene			50.0	50.24		ug/L		100	70 - 130	4	30
trans-1,3-Dichloropropene			50.0	44.28		ug/L		89	78 - 132	4	22
tert-Butylbenzene			50.0	48.26		ug/L		97	80 - 125	8	20
Tetrachloroethene			50.0	51.61		ug/L		103	54 ₋ 144	11	30
Toluene			50.0	51.22		ug/L		102	80 - 122	6	20
Trichloroethene			50.0	52.31		ug/L		105	77 - 125	7	22
Trichlorofluoromethane			50.0	60.28		ug/L		121	69 - 141	17	30
Vinyl acetate			50.0	45.16		ug/L		90	50 - 150	3	30
Vinyl chloride			50.0	47.81		ug/L		96	63 - 135	5	30
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
1,2-Dichloroethane-d4 (Surr)	108		80 - 129								
4-Bromofluorobenzene (Surr)	101		77 - 120								
Dibromofluoromethane (Surr)	100		80 - 128								
Toluene-d8 (Surr)	103		80 - 120								

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 570-95155/5 Matrix: Water Analysis Batch: 95155				•	Client Sam	ple ID: Method Prep Type: To		
	МВ	МВ						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	ND		0.10	mg/L			09/17/20 09:56	1

Eurofins Calscience LLC

8

Job ID: 570-38680-1

8

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCS 570-95155/6					Clier	nt Sar	nple ID	: Lab Cor		
Matrix: Water								Prep Ty	pe: Tot	al/NA
Analysis Batch: 95155										
		Spike	LCS	LCS				%Rec.		
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits		
Nitrate as N		5.00	4.832		mg/L		97	90 - 110		
Lab Sample ID: LCSD 570-95155/7 Matrix: Water				C	lient Sa	mple	ID: Lab	Control Prep Ty		
Analysis Batch: 95155										
,		Spike	LCSD	LCSD				%Rec.		RPD
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Nitrate as N		5.00	4.833		mg/L		97	90 - 110	0	15
Leh Semula ID: MD 570 05456/5						Clie			ath a d l	Diank
Lab Sample ID: MB 570-95156/5						Cile	int San	ple ID: M		
Matrix: Water								Prep Ty	pe: lot	al/NA
Analysis Batch: 95156										
	MB MB									
Analyte	Result Qualifi	er	RL	Unit) <u>P</u>	repared	Analyz		Dil Fac
Chloride	ND		1.0	mg/L				09/17/20	09:56	1
Sulfate	ND		1.0	mg/L				09/17/20	09:56	1
Lab Sample ID: LCS 570-95156/6					Clier	nt Sar	nple ID	: Lab Cor	ntrol Sa	mple
Matrix: Water					-			Prep Ty		
Analysis Batch: 95156									po. 101	
Analysis Baten. 50100		Spike	1.05	LCS				%Rec.		
Analyte		Added	-	Qualifier	Unit	D	%Rec	Limits		
		50.0	48.64	Quaimer	mg/L		97	90 - 110		
Chionae		50.0	40.04		IIIQ/L		97	90-110		
Sulfata		50.0	40.27		-		00	00 110		
Sulfate		50.0	49.37		mg/L		99	90 - 110		
Sulfate Lab Sample ID: LCSD 570-95156/7		50.0	49.37	C	mg/L	mple				
Lab Sample ID: LCSD 570-95156/7		50.0	49.37	C	mg/L	mple				
Lab Sample ID: LCSD 570-95156/7 Matrix: Water		50.0	49.37	C	mg/L	mple				
Lab Sample ID: LCSD 570-95156/7 Matrix: Water		50.0 Spike		C	mg/L	mple				al/NA
Lab Sample ID: LCSD 570-95156/7 Matrix: Water Analysis Batch: 95156		Spike	LCSD	LCSD	mg/L	mple D	ID: Lab	Control Prep Ty %Rec.	pe: Tot	al/NA
Lab Sample ID: LCSD 570-95156/7 Matrix: Water Analysis Batch: 95156 Analyte		Spike Added	LCSD Result		mg/L Slient Sa		ID: Lab	Control Prep Ty %Rec. Limits	pe: Tot	al/NA RPD Limit
Lab Sample ID: LCSD 570-95156/7 Matrix: Water Analysis Batch: 95156 Analyte		Spike	LCSD	LCSD	mg/L		ID: Lab	Control Prep Ty %Rec.	pe: Tot	RPD Limit
Lab Sample ID: LCSD 570-95156/7 Matrix: Water Analysis Batch: 95156 Analyte Chloride Sulfate		Spike Added 50.0	LCSD Result 48.63	LCSD	mg/L Client Sa Unit mg/L		1D: Lab %Rec 97 98	Control Prep Ty %Rec. Limits 90 - 110 90 - 110	RPD 0	RPD Limit 15 15
Lab Sample ID: LCSD 570-95156/7 Matrix: Water Analysis Batch: 95156 Analyte Chloride Sulfate Lab Sample ID: 570-38680-3 MS		Spike Added 50.0	LCSD Result 48.63	LCSD	mg/L Client Sa Unit mg/L		1D: Lab %Rec 97 98	Control Prep Ty %Rec. Limits 90 - 110 90 - 110 Sample IE	RPD 0 0 0: C-1-(RPD Limit 15 15
Lab Sample ID: LCSD 570-95156/7 Matrix: Water Analysis Batch: 95156 Analyte Chloride Sulfate Lab Sample ID: 570-38680-3 MS Matrix: Water		Spike Added 50.0	LCSD Result 48.63	LCSD	mg/L Client Sa Unit mg/L		1D: Lab %Rec 97 98	Control Prep Ty %Rec. Limits 90 - 110 90 - 110	RPD 0 0 0: C-1-(RPD Limit 15 15 CW06
Lab Sample ID: LCSD 570-95156/7 Matrix: Water Analysis Batch: 95156 Analyte Chloride Sulfate Lab Sample ID: 570-38680-3 MS Matrix: Water Analysis Batch: 95156		Spike Added 50.0 50.0	LCSD Result 48.63 49.13	LCSD Qualifier	mg/L Client Sa Unit mg/L		1D: Lab %Rec 97 98	Control Prep Ty %Rec. Limits 90 - 110 90 - 110 Sample III Prep Ty	RPD 0 0 0: C-1-(RPD Limit 15 15
Lab Sample ID: LCSD 570-95156/7 Matrix: Water Analysis Batch: 95156 Analyte Chloride Sulfate Lab Sample ID: 570-38680-3 MS Matrix: Water Analysis Batch: 95156		Spike <u>Added</u> 50.0 50.0 Spike	LCSD Result 48.63 49.13 MS	LCSD Qualifier MS	mg/L Elient Sa Unit mg/L mg/L		ID: Lab %Rec 97 98 Client	Control : Prep Ty %Rec. Limits 90 - 110 90 - 110 Sample II Prep Ty %Rec.	RPD 0 0 0: C-1-(RPD Limit 15 15
Lab Sample ID: LCSD 570-95156/7 Matrix: Water Analysis Batch: 95156 Analyte Chloride Sulfate Lab Sample ID: 570-38680-3 MS Matrix: Water Analysis Batch: 95156 Sam Analyte	ple Sample sult Qualifier	Spike Added 50.0 50.0 Spike Added	LCSD Result 48.63 49.13 MS Result	LCSD Qualifier	mg/L Client Sa Unit mg/L mg/L Unit		1D: Lab %Rec 97 98	Control Prep Ty %Rec. Limits 90 - 110 90 - 110 Sample II Prep Ty %Rec. Limits	RPD 0 0 0: C-1-(RPD Limit 15 15
Lab Sample ID: LCSD 570-95156/7 Matrix: Water Analysis Batch: 95156 Analyte Chloride Sulfate Lab Sample ID: 570-38680-3 MS Matrix: Water Analysis Batch: 95156 Sam Analyte Res		Spike <u>Added</u> 50.0 50.0 Spike	LCSD Result 48.63 49.13 MS	LCSD Qualifier MS	mg/L Elient Sa Unit mg/L mg/L	<u> </u>	ID: Lab %Rec 97 98 Client	Control : Prep Ty %Rec. Limits 90 - 110 90 - 110 Sample II Prep Ty %Rec.	RPD 0 0 0: C-1-(RPD Limit 15 15
Lab Sample ID: LCSD 570-95156/7 Matrix: Water Analysis Batch: 95156 Analyte Chloride Sulfate Lab Sample ID: 570-38680-3 MS Matrix: Water Analysis Batch: 95156 Sam Analyte Chloride	ple Sample sult Qualifier	Spike Added 50.0 50.0 Spike Added	LCSD Result 48.63 49.13 MS Result	LCSD Qualifier MS	mg/L Client Sa Unit mg/L mg/L Unit	<u> </u>	ID: Lab %Rec 97 98 Client	Control Prep Ty %Rec. Limits 90 - 110 90 - 110 Sample II Prep Ty %Rec. Limits	RPD 0 0 0: C-1-(RPD Limit 15 15
Lab Sample ID: LCSD 570-95156/7 Matrix: Water Analysis Batch: 95156 Analyte Chloride Sulfate Lab Sample ID: 570-38680-3 MS Matrix: Water Analysis Batch: 95156 Sam Chloride Sulfate	ple Sample sult Qualifier	Spike Added 50.0 50.0 Spike Added 50.0	LCSD Result 48.63 49.13 MS Result 74.33	LCSD Qualifier MS	mg/L Client Sa Unit mg/L mg/L	<u> </u>	ID: Lab %Rec 97 98 Client %Rec 106 113	Control Prep Ty %Rec. Limits 90 - 110 90 - 110 Sample III Prep Ty %Rec. Limits 80 - 120 80 - 120	RPD 0 0 0: C-1-0 pe: Tot	al/NA RPD Limit 15 15 CW06 al/NA
Lab Sample ID: LCSD 570-95156/7 Matrix: Water Analysis Batch: 95156 Analyte Chloride Sulfate Lab Sample ID: 570-38680-3 MS Matrix: Water Analysis Batch: 95156 Sam Analyte Chloride Sulfate Lab Sample ID: 570-38680-3 MSD	ple Sample sult Qualifier	Spike Added 50.0 50.0 Spike Added 50.0	LCSD Result 48.63 49.13 MS Result 74.33	LCSD Qualifier MS	mg/L Client Sa Unit mg/L mg/L	<u> </u>	ID: Lab %Rec 97 98 Client %Rec 106 113	Control Prep Ty %Rec. Limits 90 - 110 90 - 110 Sample III Prep Ty %Rec. Limits 80 - 120 80 - 120 Sample III	RPD 0 0 0 0: C-1-0 0 0: C-1-0 0	al/NA RPD Limit 15 15 CW06 al/NA
Lab Sample ID: LCSD 570-95156/7 Matrix: Water Analysis Batch: 95156 Analyte Chloride Sulfate Lab Sample ID: 570-38680-3 MS Matrix: Water Analysis Batch: 95156 Sam Analyte Res Chloride Sulfate Lab Sample ID: 570-38680-3 MSD Matrix: Water	ple Sample sult Qualifier	Spike Added 50.0 50.0 Spike Added 50.0	LCSD Result 48.63 49.13 MS Result 74.33	LCSD Qualifier MS	mg/L Client Sa Unit mg/L mg/L	<u> </u>	ID: Lab %Rec 97 98 Client %Rec 106 113	Control Prep Ty %Rec. Limits 90 - 110 90 - 110 Sample III Prep Ty %Rec. Limits 80 - 120 80 - 120	RPD 0 0 0 0: C-1-0 0 0: C-1-0 0	al/NA RPD Limit 15 15 CW06 al/NA
Lab Sample ID: LCSD 570-95156/7 Matrix: Water Analysis Batch: 95156 Analyte Chloride Sulfate Lab Sample ID: 570-38680-3 MS Matrix: Water Analysis Batch: 95156 Sam Chloride Sulfate Lab Sample ID: 570-38680-3 MSD Matrix: Water Analysis Batch: 95156	ple Sample sult Qualifier	Spike Added 50.0 50.0 Spike Added 50.0	LCSD Result 48.63 49.13 MS Result 74.33 99.35	LCSD Qualifier MS	mg/L Client Sa Unit mg/L mg/L	<u> </u>	ID: Lab %Rec 97 98 Client %Rec 106 113	Control Prep Ty %Rec. Limits 90 - 110 90 - 110 Sample III Prep Ty %Rec. Limits 80 - 120 80 - 120 Sample III	RPD 0 0 0 0: C-1-0 0 0: C-1-0 0	al/NA RPD Limit 15 15 CW06 al/NA CW06 al/NA
Lab Sample ID: LCSD 570-95156/7 Matrix: Water Analysis Batch: 95156 Analyte Chloride Sulfate Lab Sample ID: 570-38680-3 MS Matrix: Water Analysis Batch: 95156 Sam Analyte Res Chloride Sulfate Lab Sample ID: 570-38680-3 MSD Matrix: Water Analysis Batch: 95156 Sam	ple Sample sult Qualifier 43	Spike Added 50.0 50.0 Spike Added 50.0	LCSD Result 48.63 49.13 MS Result 74.33 99.35	LCSD Qualifier MS Qualifier	mg/L Client Sa Unit mg/L mg/L	<u> </u>	ID: Lab %Rec 97 98 Client %Rec 106 113	Control Prep Ty %Rec. Limits 90 - 110 90 - 110 Sample III Prep Ty %Rec. Limits 80 - 120 80 - 120 Sample III Prep Ty	RPD 0 0 0 0: C-1-0 0 0: C-1-0 0	al/NA RPD Limit 15 15 CW06 al/NA CW06
Lab Sample ID: LCSD 570-95156/7 Matrix: Water Analysis Batch: 95156 Analyte Chloride Sulfate Lab Sample ID: 570-38680-3 MS Matrix: Water Analysis Batch: 95156 Sam Analyte Chloride Sulfate Lab Sample ID: 570-38680-3 MSD Matrix: Water Analysis Batch: 95156 Sam	ple Sample sult Qualifier 43	Spike Added 50.0 50.0 Spike Added 50.0 Spike Added 50.0 Spike Added 50.0 Spike Added 50.0 Spike	LCSD Result 48.63 49.13 MS Result 74.33 99.35	LCSD Qualifier MS Qualifier MSD	mg/L Elient Sa Unit mg/L mg/L mg/L mg/L mg/L	D	%Rec 97 98 Client %Rec 106 113 Client 113 Client 113	Control : Prep Ty %Rec. Limits 90 - 110 90 - 110 Sample II Prep Ty %Rec. Limits 80 - 120 80 - 120 Sample II Prep Ty %Rec.	RPD 0	al/NA RPD Limit 15 15 CW06 al/NA CW06 al/NA RPD

Job ID: 570-38680-1

8 9

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: MB 570-95 Matrix: Water Analysis Batch: 95445	5445/5						Clie	ent Samp	ole ID: Me Prep Typ		
Analysis Batch. 95445		МВ МВ									
Analyte	Re	sult Quali	ior	RL	Unit	6	Þ	repared	Analyze	hd	Dil Fa
Nitrate as N				0.10	<u>mg/L</u>			repared	09/18/20 0		Dirra
Lab Sample ID: LCS 570-9 Matrix: Water	5445/6					Clier	it Sa	mpie iD:	Lab Cont Prep Typ		
Analysis Batch: 95445			0						0/ D		
Analyte			Spike Added	-	LCS Qualifier	Unit	D	%Rec	%Rec. Limits		
Nitrate as N			5.00	4.991		mg/L		100	90 - 110		
Lab Sample ID: LCSD 570	-95445/7					lient Sa	mnle	ID: I ab	Control S	amnl	۵ Du
Matrix: Water	-56446/1						inpic		Prep Typ		
Analysis Batch: 95445											
Analyta			Spike	_	LCSD	11		9/ D oo	%Rec.		RP
Analyte Nitrate as N			Added 5.00	4.985	Qualifier	Unit mg/L	D	%Rec	Limits 90 - 110	RPD 0	Lim
			0.00	4.000		ilig/L		100	00-110	Ū	
Lab Sample ID: 570-38680 Matrix: Water	-3 MS							Client S	ample ID: Prep Typ		
Analysis Batch: 95445											
	Sample	Sample	Spike	MS	MS				%Rec.		
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits		
Nitrate as N	11		5.00	15.20		mg/L		93	80 - 120		
Lab Sample ID: 570-38680 Matrix: Water Analysis Batch: 95445	-3 MSD							Client S	ample ID: Prep Typ		
· · · · · · · · · · · · · · · · · · ·	Sample	Sample	Spike	MSD	MSD				%Rec.		RP
	Desult	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Lim
Analyte	Result							~~	80 - 120	1	2
•	11		5.00	15.07		mg/L		90	00 - 120	•	
Nitrate as N	11		5.00	15.07		mg/L		90	00-120	·	
Nitrate as N lethod: 6010B - Metals Lab Sample ID: MB 570-97	11 s (ICP)		5.00	15.07		mg/L	Clie		ole ID: Me	thod	
Nitrate as N lethod: 6010B - Metals Lab Sample ID: MB 570-97 Matrix: Water	11 s (ICP)		5.00	15.07		mg/L	Clie		ole ID: Me Prep Typ	thod e: To	tal/N
Nitrate as N lethod: 6010B - Metals Lab Sample ID: MB 570-97 Matrix: Water	11 s (ICP)	MB MB	5.00	15.07		mg/L	Clie		ole ID: Me	thod e: To	tal/N
Nitrate as N lethod: 6010B - Metals Lab Sample ID: MB 570-97 Matrix: Water Analysis Batch: 98711	11 s (ICP) /886/1-A	MB MB			Unit			ent Samp	ole ID: Me Prep Typ Prep Ba	thod e: To atch:	tal/N 9788
Nitrate as N lethod: 6010B - Metals Lab Sample ID: MB 570-97 Matrix: Water Analysis Batch: 98711 Analyte	11 s (ICP) /886/1-A	sult Quali			<u>Unit</u>	mg/L) _Р	ent Samp	ole ID: Me Prep Typ Prep Ba Analyze	thod e: To atch:	tal/N 9788
Nitrate as N Lethod: 6010B - Metals Lab Sample ID: MB 570-97 Matrix: Water Analysis Batch: 98711 Analyte Calcium	11 s (ICP) /886/1-A		ïer	RL 2.00	mg/L		P 09/2	repared 19/20 08:00	Die ID: Me Prep Typ Prep Ba Analyze 09/30/20 1	thod e: To atch: ed 9:52	tal/N 9788
Nitrate as N Iethod: 6010B - Metals Lab Sample ID: MB 570-97 Matrix: Water Analysis Batch: 98711 Analyte Calcium Magnesium	11 s (ICP) /886/1-A	ND ND	ïer	RL 2.00).500	mg/L mg/L		P 09/2 09/2	repared 29/20 08:00	Die ID: Me Prep Typ Prep Ba 09/30/20 1 09/30/20 1	thod e: To atch: ed 9:52 9:52	tal/N 9788
Nitrate as N Iethod: 6010B - Metals Lab Sample ID: MB 570-97 Matrix: Water Analysis Batch: 98711 Analyte Calcium Magnesium Potassium	11 s (ICP) /886/1-A	ND Qualif	ïer	RL 2.00	mg/L		0 P 09/2 09/2 09/2	repared 19/20 08:00 19/20 08:00	Die ID: Me Prep Typ Prep Ba Analyze 09/30/20 1	thod e: To atch: 9:52 9:52 9:52	tal/N 9788
Nitrate as N Iethod: 6010B - Metals Lab Sample ID: MB 570-97 Matrix: Water Analysis Batch: 98711 Analyte Calcium Magnesium Potassium Sodium	11 s (ICP) 7886/1-A 	ND ND ND ND	ïer	RL 2.00 0.500 2.00	mg/L mg/L mg/L	<u>C</u>	0 P 09/2 09/2 09/2 09/2	repared 19/20 08:00 19/20 08:00 19/20 08:00 19/20 08:00	Die ID: Me Prep Typ Prep Ba 09/30/20 1 09/30/20 1 09/30/20 1	thod e: To atch: 9:52 9:52 9:52 9:52	tal/N 9788 Dil Fa
Nitrate as N Iethod: 6010B - Metals Lab Sample ID: MB 570-97 Matrix: Water Analysis Batch: 98711 Analyte Calcium Magnesium Potassium Sodium Lab Sample ID: LCS 570-9 Matrix: Water	11 s (ICP) 7886/1-A 	ND ND ND ND	ïer	RL 2.00 0.500 2.00	mg/L mg/L mg/L	<u>C</u>	0 P 09/2 09/2 09/2 09/2	repared 19/20 08:00 19/20 08:00 19/20 08:00 19/20 08:00	Die ID: Me Prep Typ Prep Ba 09/30/20 1 09/30/20 1 09/30/20 1 09/30/20 1	thod e: To atch: 9:52 9:52 9:52 9:52	tal/N 9788 Dil Fa
Analyte Nitrate as N lethod: 6010B - Metals Lab Sample ID: MB 570-97 Matrix: Water Analysis Batch: 98711 Analyte Calcium Magnesium Potassium Sodium Lab Sample ID: LCS 570-9 Matrix: Water Analysis Batch: 98711	11 s (ICP) 7886/1-A 	ND ND ND ND	ïer	RL 2.00 0.500 2.00	mg/L mg/L mg/L	<u>C</u>	0 P 09/2 09/2 09/2 09/2	repared 19/20 08:00 19/20 08:00 19/20 08:00 19/20 08:00	Die ID: Me Prep Typ Prep Ba 09/30/20 1 09/30/20 1 09/30/20 1 09/30/20 1 Lab Cont	thod e: To atch: 9:52 9:52 9:52 9:52 9:52 e: To	tal/N 9788 Dil Fa ampl tal/N
Nitrate as N Iethod: 6010B - Metals Lab Sample ID: MB 570-97 Matrix: Water Analysis Batch: 98711 Analyte Calcium Magnesium Potassium Sodium Lab Sample ID: LCS 570-9 Matrix: Water	11 s (ICP) 7886/1-A 	ND ND ND ND	ïer	RL 2.00 0.500 2.00 2.00	mg/L mg/L mg/L	<u>C</u>	0 P 09/2 09/2 09/2 09/2	repared 19/20 08:00 19/20 08:00 19/20 08:00 19/20 08:00	Die ID: Me Prep Typ Prep Ba 09/30/20 1 09/30/20 1 09/30/20 1 09/30/20 1 Lab Cont Prep Typ	thod e: To atch: 9:52 9:52 9:52 9:52 9:52 e: To	tal/N 9788 Dil Fa ampl tal/N
Nitrate as N Iethod: 6010B - Metals Lab Sample ID: MB 570-97 Matrix: Water Analysis Batch: 98711 Analyte Calcium Magnesium Potassium Potassium Sodium Lab Sample ID: LCS 570-9 Matrix: Water Analysis Batch: 98711	11 s (ICP) 7886/1-A 	ND ND ND ND	ier(Spike Added	RL 2.00 0.500 2.00 2.00 LCS Result	mg/L mg/L mg/L Mg/L	<u>C</u>	0 P 09/2 09/2 09/2 09/2	repared 19/20 08:00 19/20 08:00 19/20 08:00 19/20 08:00	Die ID: Me Prep Typ Prep Ba 09/30/20 1 09/30/20 1 09/30/20 1 09/30/20 1 Lab Cont Prep Typ Prep Ba	thod e: To atch: 9:52 9:52 9:52 9:52 9:52 e: To	tal/N 9788 Dil Fa ampl tal/N
Nitrate as N Iethod: 6010B - Metals Lab Sample ID: MB 570-97 Matrix: Water Analysis Batch: 98711 Analyte Calcium Magnesium Potassium Sodium Lab Sample ID: LCS 570-9 Matrix: Water	11 s (ICP) 7886/1-A 	ND ND ND ND	ier(RL 2.00 0.500 2.00 2.00	mg/L mg/L mg/L Mg/L	Clier	P 09/2 09/2 09/2 09/2 09/2	repared 29/20 08:00 29/20 08:00 29/20 08:00 29/20 08:00 mple ID:	Die ID: Me Prep Typ Prep Ba 09/30/20 1 09/30/20 1 09/30/20 1 09/30/20 1 Lab Cont Prep Typ Prep Ba %Rec.	thod e: To atch: 9:52 9:52 9:52 9:52 9:52 e: To	tal/N 9788 Dil Fa ampl tal/N
Nitrate as N Iethod: 6010B - Metals Lab Sample ID: MB 570-97 Matrix: Water Analysis Batch: 98711 Analyte Calcium Magnesium Potassium Sodium Lab Sample ID: LCS 570-9 Matrix: Water Analysis Batch: 98711 Analyte	11 s (ICP) 7886/1-A 	ND ND ND ND	ier(Spike Added	RL 2.00 0.500 2.00 2.00 LCS Result	mg/L mg/L mg/L Mg/L	Clier	P 09/2 09/2 09/2 09/2 09/2	repared 9/20 08:00 9/20 08:00 9/20 08:00 9/20 08:00 mple ID: %Rec	Die ID: Me Prep Typ Prep Ba 09/30/20 1 09/30/20 1 09/30/20 1 09/30/20 1 Lab Contt Prep Typ Prep Ba %Rec. Limits	thod e: To atch: 9:52 9:52 9:52 9:52 9:52 e: To	tal/N 9788 Dil Fa amp tal/N

Job ID: 570-38680-1

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Client Sample ID: Matrix Spike Duplicate

Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: LCS 570-97886/2-A Matrix: Water Analysis Batch: 98711				Clie	nt Sar	nple ID	: Lab Control Sample Prep Type: Total/NA Prep Batch: 97886
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Sodium	5.00	4.795		mg/L		96	80 - 120
Lab Sample ID: LCSD 570-97886/3-A			C	Client Sa	mple	ID: Lab	Control Sample Dup

Lab Sample ID: LCSD 570-97886/3-A Matrix: Water

Analysis Batch: 98711						Prep B	atch: S	97886	
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Calcium	0.500	0.5154	J	mg/L		103	80 - 120	2	20
Magnesium	0.500	0.5120		mg/L		102	80 - 120	0	20
Potassium	5.00	4.956		mg/L		99	80 - 120	2	20
Sodium	5.00	4.736		mg/L		95	80 - 120	1	20

Lab Sample ID: 570-38371-D-1-A MS Matrix: Water

Analysis Batch: 98711									Prep I	Batch: 97886
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Calcium	89.4		0.500	90.71	4	mg/L		260	77 - 113	
Magnesium	38.7		0.500	39.69	4	mg/L		196	56 - 140	
Potassium	7.51		5.00	12.90		mg/L		108	83 - 131	
Sodium	105		5.00	111.9	4	mg/L		132	73 - 127	

Lab Sample ID: 570-38371-D-1-B MSD Matrix: Water

Analysis Batch: 98711									Prep Batch: 9				
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit		
Calcium	89.4		0.500	91.08	4	mg/L		335	77 _ 113	0	11		
Magnesium	38.7		0.500	39.67	4	mg/L		191	56 - 140	0	11		
Potassium	7.51		5.00	12.97		mg/L		109	83 - 131	1	7		
Sodium	105		5.00	111.4	4	mg/L		121	73 - 127	1	9		

Method: SM 2320B - Alkalinity

Lab Sample ID: MB 570-97663 Matrix: Water Analysis Batch: 97663		мв				Client Sam	ple ID: Methoo Prep Type: To	
Analyte	Result C	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity, Total (As CaCO3)	ND		5.00	mg/L		-	09/25/20 19:38	1
Bicarbonate (as CaCO3)	ND		5.00	mg/L			09/25/20 19:38	1
Carbonate (as CaCO3)	ND		5.00	mg/L			09/25/20 19:38	1
Hydroxide (as CaCO3)	ND		5.00	mg/L			09/25/20 19:38	1

Lab Sample ID: LCS 570-97663/42 **Matrix: Water** Analysis Batch: 97663

Analysis Daten. 37003								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Alkalinity, Total (As CaCO3)	100	98.37		mg/L		98	80 - 120	

Eurofins Calscience LLC

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Page 17 of 28

LCSD LCSD

DU DU

Result Qualifier Unit

98.88

270.5

270.5

Result Qualifier

Unit

mg/L

mg/L

mg/L

Spike

Added

Sample Sample

273

273

Result Qualifier

100

Lab Sample ID: LCSD 570-97663/43

Lab Sample ID: 570-38567-B-1 DU

Matrix: Water

Matrix: Water

Analyte

Analyte

Analysis Batch: 97663

Alkalinity, Total (As CaCO3)

Analysis Batch: 97663

Alkalinity, Total (As CaCO3)

Bicarbonate (as CaCO3)

Method: SM 2320B - Alkalinity (Continued)

Prep Type: Total/NA

Prep Type: Total/NA

RPD

1

1

RPD

1

Client Sample ID: Lab Control Sample Dup

D %Rec

D

99

%Rec.

Limits

80 - 120

Client Sample ID: Duplicate

RPD

Limit

RPD

Limit

25

25

20

8

Carbonate (as CaCO3)	ND			ND	mg/L			N	C 25	
Hydroxide (as CaCO3)	ND			ND	mg/L			N	C 25	
Method: SM 2540C - So	lids, Total D	issolved	(TDS)							
Lab Sample ID: MB 570-97	861/1						Client Sam	ple ID: Metho	d Blank	
Matrix: Water Analysis Batch: 97861								Prep Type: T	otal/NA	13
	MB	МВ								
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac	
Total Dissolved Solids	ND		0.400		mg/L			09/28/20 21:44	1	
Lab Sample ID: LCS 570-9	7861/2				CI	ient	Sample ID:	Lab Control	Sample	
Matulas Matan								Drew Truest T		

Lab Sample ID: LCS 570-97861/2				Clie	ent Sa	mple ID	: Lab Cor	ntrol Sa	ample
Matrix: Water							Prep Ty	pe: Tot	al/NA
Analysis Batch: 97861									
	Spike	LCS	LCS				%Rec.		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Total Dissolved Solids	100	87.50		mg/L		88	84 - 108		
Lab Sample ID: LCSD 570-97861/3			C	Client Sa	ample	ID: Lat		Sample	e Dup
Matrix: Water					-		Prep Ty	pe: Tot	al/NA
Analysis Batch: 97861									
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Total Dissolved Solids	100	90.00		mg/L		90	84 - 108	3	10
Lab Sample ID: 570-38972-Q-1 DU						Client	Sample I	D: Dup	licate
Matrix: Water							Prep Ty	pe: Tot	al/NA
Analysis Batch: 97861								•	

Analysis Daton. STOOT								
	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Total Dissolved Solids	4270		4235		mg/L		 0.7	10

Marginal Exceedance (ME) Summary

Client: Geosyntec Consultants, Inc. Project/Site: Burbank Airport (WR2693-02A)

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: LCS 570-97932/3 Matrix: Water

Matrix: Water								Prep Type: Total/NA
	Spike	LCS	LCS			%Rec.	ME %Rec.	Marginal Exceedance
Analyte	Added	Result	Qualifier	Unit	%Rec	Limits	Limits	Status
1,1,1,2-Tetrachloroethane	50.0	49.40		ug/L	99	80 - 126	72 - 134	
1,1,1-Trichloroethane	50.0	50.12		ug/L	100	73 - 127	64 - 136	
1,1,2,2-Tetrachloroethane	50.0	47.54		ug/L	95	76 - 120	69 - 127	
1,1,2-Trichloro-1,2,2-trifluoroetha ne	50.0	49.38		ug/L	99	53 - 155	36 - 172	
1,1,2-Trichloroethane	50.0	51.46		ug/L	103	80 - 120	73 - 127	
1,1-Dichloroethane	50.0	54.53		ug/L	109	73 - 127	64 - 136	
1,1-Dichloroethene	50.0	56.76		ug/L	114	64 - 136	52 - 148	
1,1-Dichloropropene	50.0	57.95		ug/L	116	73 - 127	64 - 136	
1,2,3-Trichlorobenzene	50.0	54.87		ug/L	110	76 - 130	67 - 139	
1,2,3-Trichloropropane	50.0	44.13		ug/L	88	77 - 125	69 - 133	
1,2,4-Trichlorobenzene	50.0	55.26		ug/L	111	74 - 134	64 - 144	
1,2,4-Trimethylbenzene	50.0	53.77		ug/L	108	80 - 123	73 - 130	
1,2-Dibromo-3-Chloropropane	50.0	43.38		ug/L	87	68 - 128	58 - 138	
1,2-Dibromoethane	50.0	49.37		ug/L	99	80 - 120	73 - 127	
1,2-Dichlorobenzene	50.0	52.38		ug/L	105	80 - 120	73 - 127	
1,2-Dichloroethane	50.0	56.83		ug/L	114	75 - 123	67 - 131	
1,2-Dichloropropane	50.0	56.11		ug/L	112	80 - 120	73 - 127	
1,3,5-Trimethylbenzene	50.0	53.91		ug/L	108	80 - 126	72 - 134	
1,3-Dichlorobenzene	50.0	52.97		ug/L	106	80 - 120	73 - 127	
1,3-Dichloropropane	50.0	50.74		ug/L	101	80 - 120	73 - 127	
1,4-Dichlorobenzene	50.0	53.31		ug/L	107	80 - 120	73 - 127	
2,2-Dichloropropane	50.0	37.22		ug/L	74	53 - 155	36 - 172	
2-Butanone	50.0	51.75		ug/L	103	53 - 137	39 - 151	
2-Chlorotoluene	50.0	54.55		ug/L	109	80 - 121	73 - 128	
2-Hexanone	50.0	50.36		ug/L	101	59 - 131	47 - 143	
4-Chlorotoluene	50.0	55.45		ug/L	111	80 - 120	73 - 127	
4-Methyl-2-pentanone	50.0	46.41		ug/L	93	68 - 122	59 - 131	
Acetone	50.0	44.63		ug/L	89	50 - 150	33 - 167	
Benzene	50.0	52.32		ug/L	105	78 - 120	71 - 127	
Bromobenzene	50.0	52.73		ug/L	105	80 - 120	73 - 127	
Bromochloromethane	50.0	51.89		ug/L	104	77 - 125	69 - 133	
Bromodichloromethane	50.0	54.71		ug/L	109	80 - 125	73 - 133	
Bromoform	50.0	50.18		ug/L	100	68 - 128	58 - 138	
Bromomethane	50.0	50.35		ug/L	101	50 - 150	33 - 167	
cis-1,2-Dichloroethene	50.0	52.68		ug/L	105	78 - 120	71 - 127	
cis-1,3-Dichloropropene	50.0	47.76		ug/L	96	80 - 129	72 - 137	
Carbon disulfide	50.0	53.39		ug/L	107	50 - 150	33 - 167	
Carbon tetrachloride	50.0	53.56		ug/L	107	67 - 139	55 - 151	
Chlorobenzene	50.0	53.74		ug/L	107	80 - 120	73 - 127	
Chloroethane	50.0	51.05		ug/L	102	64 - 130	53 - 141	
Chloroform	50.0	54.26		ug/L	109	77 - 120	70 - 127	
Chloromethane	50.0	55.61		ug/L	111	56 - 128	44 - 140	
Dibromochloromethane	50.0	52.92		ug/L	106	77 - 125	69 - 133	
Dibromomethane	50.0	54.26		ug/L	109	80 - 120	73 - 127	
Dichlorodifluoromethane	50.0	63.47		ug/L	127	50 - 150	33 - 167	
Ethylbenzene	50.0	55.06		ug/L	110	80 - 120	73 - 127	
Isopropylbenzene	50.0	55.60		ug/L	111	80 - 126	72 - 134	
Methylene Chloride	50.0	49.62		ug/L	99	73 - 127	64 - 136	
Methyl-t-Butyl Ether (MTBE)	50.0	42.37		ug/L	85	77 - 120	70 - 127	

Eurofins Calscience LLC

5

8

Client Sample ID: Lab Control Sample

Marginal Exceedance (ME) Summary

Unit

ug/L

1

Number of Marginal

Exceedances Found

Client: Geosyntec Consultants, Inc. Project/Site: Burbank Airport (WR2693-02A)

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Spike

Added

50.0

50.0

50.0

50.0

100

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

Number of Marginal

Exceedances Allowed

LCS LCS

48.42

55.15

56.87

54.13

111.2

53.48

55.51

53.38

52.05

46.05

52.50

57.44

54.25

56.23

43.74

50.15

3

71.20 * me

Result Qualifier

Lab Sample ID: LCS 570-97932/3 **Matrix: Water**

Analyte

o-Xylene

Styrene

Toluene

m,p-Xylene

Naphthalene

n-Butylbenzene

N-Propylbenzene

p-Isopropyltoluene

sec-Butylbenzene

tert-Butylbenzene

Tetrachloroethene

Trichloroethene

Vinyl acetate

Vinyl chloride

Summary

Trichlorofluoromethane

Number of

66

Analytes Reported

ME = Marginal Exceedance

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Marginal Exceedance

Status

ME

%Rec.

Limits

64 - 136

78 - 132

80 - 125

80 - 125

80 - 125

80 - 129

80 - 125

80 - 122

70 - 130

78 - 132

80 - 125

54 - 144

80 - 122

77 - 125

69 - 141

50 - 150

63 - 135

%Rec

97

110

114

108

111

107

111

107

104

92

105

115

109

112

142

87

100

ME %Rec.

Limits

52 - 148

69 - 141

73 - 133

73 - 133

73 - 133

72 - 137

73 - 133

73 - 129

60 - 140

69 - 141

73 - 133

39 - 159

73 - 129

69 - 133

57 - 153

N/A

51 - 147

8
ç

2 3 4 5 6

9

3

HPLC/IC Analysis Batch: 95155

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-38680-3	C-1-CW06	Total/NA	Water	300.0	
570-38680-4	B-6-CW10	Total/NA	Water	300.0	
Analysis Batch: 9	5156				

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-38680-1	C-1-CW08	Total/NA	Water	300.0	
570-38680-2	C-1-CW03	Total/NA	Water	300.0	
570-38680-3	C-1-CW06	Total/NA	Water	300.0	
570-38680-4	B-6-CW10	Total/NA	Water	300.0	

Analysis Batch: 95445

Lab Sample ID 570-38680-1	Client Sample ID	Prep Type Total/NA	Matrix Water	Method 300.0	Prep Batch
570-38680-2	C-1-CW03	Total/NA	Water	300.0	
570-38680-3	C-1-CW06	Total/NA	Water	300.0	

Metals

Prep Batch: 97886

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
570-38680-1	C-1-CW08	Total/NA	Water	3010A	
570-38680-2	C-1-CW03	Total/NA	Water	3010A	
570-38680-3	C-1-CW06	Total/NA	Water	3010A	
570-38680-4	B-6-CW10	Total/NA	Water	3010A	

Analysis Batch: 98711

Lab Sample ID 570-38680-1	Client Sample ID C-1-CW08	Prep Type Total/NA	Matrix Water	Method 6010B	Prep Batch 97886
570-38680-2	C-1-CW03	Total/NA	Water	6010B	97886
570-38680-3	C-1-CW06	Total/NA	Water	6010B	97886
570-38680-4	B-6-CW10	Total/NA	Water	6010B	97886

General Chemistry

Analysis Batch: 97663

Lab Sample ID 570-38680-1	Client Sample ID C-1-CW08	Prep Type Total/NA	Matrix Water	Method SM 2320B	Prep Batch
570-38680-2	C-1-CW03	Total/NA	Water	SM 2320B	
570-38680-3	C-1-CW06	Total/NA	Water	SM 2320B	
570-38680-4	B-6-CW10	Total/NA	Water	SM 2320B	

Analysis Batch: 97861

Lab Sample ID 570-38680-1	Client Sample ID	Prep Type Total/NA	Matrix Water	Method SM 2540C	Prep Batch
570-38680-2	C-1-CW03	Total/NA	Water	SM 2540C	
570-38680-3	C-1-CW06	Total/NA	Water	SM 2540C	
570-38680-4	B-6-CW10	Total/NA	Water	SM 2540C	

Matrix: Water

5

10

Lab Sample ID: 570-38680-1

Client Sample ID: C-1-CW08 Date Collected: 09/17/20 08:29 Date Received: 09/17/20 16:13

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumen	300.0 it ID: IC15		1			95156	09/17/20 17:36	URMH	ECL 1
Total/NA	Analysis Instrumen	300.0 it ID: IC7		10			95445	09/18/20 10:33	P6WT	ECL 1
Total/NA	Prep	3010A			50 mL	50 mL	97886	09/29/20 08:00	WL8G	ECL 1
Total/NA	Analysis Instrumen	6010B tt ID: ICP8		1			98711	09/30/20 20:25	OYW3	ECL 1
Total/NA	Analysis Instrumen	SM 2320B t ID: ManSciMantech	1	1	35 mL	35 mL	97663	09/25/20 20:31	UAPD	ECL 1
Total/NA	Analysis Instrumen	SM 2540C t ID: NOEQUIP		1	20 mL	20 mL	97861	09/28/20 21:44	UAPD	ECL 1

Client Sample ID: C-1-CW03 Date Collected: 09/17/20 10:21 Date Received: 09/17/20 16:13

Lab Sample ID: 570-38680-2

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run F	actor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumen	300.0 t ID: IC15		1			95156	09/17/20 17:56	URMH	ECL 1
Total/NA	Analysis Instrumen	300.0 t ID: IC7		10			95445	09/18/20 10:53	P6WT	ECL 1
Total/NA	Prep	3010A			50 mL	50 mL	97886	09/29/20 08:00	WL8G	ECL 1
Total/NA	Analysis Instrumen	6010B t ID: ICP8		1			98711	09/30/20 20:28	OYW3	ECL 1
Total/NA	Analysis Instrumen	SM 2320B t ID: ManSciMantech	1	1	35 mL	35 mL	97663	09/25/20 20:37	UAPD	ECL 1
Total/NA	Analysis Instrumen	SM 2540C t ID: NOEQUIP		1	20 mL	20 mL	97861	09/28/20 21:44	UAPD	ECL 1

Client Sample ID: C-1-CW06 Date Collected: 09/17/20 11:41 Date Received: 09/17/20 16:13

Lab Sample ID: 570-38680-3

Mat	riv	Wat	or
Iviat		vva	ei

Prep Type	Batch Type	Batch Method	D Run Facto		Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	at ID: IC15		1		95155	09/17/20 18:17		ECL 1
Total/NA	Analysis Instrumer	300.0 nt ID: IC15		1		95156	09/17/20 18:17	URMH	ECL 1
Total/NA	Analysis Instrumer	300.0 nt ID: IC7	1	0		95445	09/18/20 11:13	P6WT	ECL 1
Total/NA Total/NA	Prep Analysis Instrumer	3010A 6010B nt ID: ICP8		50 mL 1	50 mL	97886 98711	09/29/20 08:00 09/30/20 20:30		ECL 1 ECL 1
Total/NA	Analysis Instrumer	SM 2320B nt ID: ManSciMantech	1	1 35 mL	35 mL	97663	09/25/20 20:44	UAPD	ECL 1

Lab Sample ID: 570-38680-3

Lab Sample ID: 570-38680-4

Matrix: Water

Matrix: Water

Client Sample ID: C-1-CW06 Date Collected: 09/17/20 11:41 Date Received: 09/17/20 16:13

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 2540C		1	20 mL	20 mL	97861	09/28/20 21:44	UAPD	ECL 1

Client Sample ID: B-6-CW10 Date Collected: 09/17/20 13:28 Date Received: 09/17/20 16:13

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumen	300.0 t ID: IC15		1			95155	09/17/20 19:18	URMH	ECL 1
Total/NA	Analysis Instrumen	300.0 t ID: IC15		1			95156	09/17/20 19:18	URMH	ECL 1
Total/NA	Prep	3010A			50 mL	50 mL	97886	09/29/20 08:00	WL8G	ECL 1
Total/NA	Analysis Instrumen	6010B t ID: ICP8		1			98711	09/30/20 20:32	OYW3	ECL 1
Total/NA	Analysis Instrumen	SM 2320B t ID: ManSciMantech	1	1	35 mL	35 mL	97663	09/25/20 20:50	UAPD	ECL 1
Total/NA	Analysis Instrumen	SM 2540C t ID: NOEQUIP		1	20 mL	20 mL	97861	09/28/20 21:44	UAPD	ECL 1

Laboratory References:

ECL 1 = Eurofins Calscience LLC Lincoln, 7440 Lincoln Way, Garden Grove, CA 92841, TEL (714)895-5494

Client: Geosyntec Consu Project/Site: Burbank Airp			Job ID: 570-38680-1	2
Laboratory: Eurofin The accreditations/certifications	s Calscience LLC listed below are applicable to this report.			
Authority	Program	Identification Number	Expiration Date	
California	State	2944	09-30-20	5

10/5/2020 (Rev. 1)

Method Summary

Client: Geosyntec Consultants, Inc. Project/Site: Burbank Airport (WR2693-02A)

Method	Method Description	Protocol	Laboratory
300.0	Anions, Ion Chromatography	MCAWW	ECL 1
6010B	Metals (ICP)	SW846	ECL 1
SM 2320B	Alkalinity	SM	ECL 1
SM 2540C	Solids, Total Dissolved (TDS)	SM	ECL 1
3010A	Preparation, Total Metals	SW846	ECL 1

Protocol References:

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

ECL 1 = Eurofins Calscience LLC Lincoln, 7440 Lincoln Way, Garden Grove, CA 92841, TEL (714)895-5494

Sample Summary

Client: Geosyntec Consultants, Inc. Project/Site: Burbank Airport (WR2693-02A) Job ID: 570-38680-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	As
570-38680-1	C-1-CW08	Water	09/17/20 08:29	09/17/20 16:13	
570-38680-2	C-1-CW03	Water	09/17/20 10:21	09/17/20 16:13	
570-38680-3	C-1-CW06	Water	09/17/20 11:41	09/17/20 16:13	
570-38680-4	B-6-CW10	Water	09/17/20 13:28	09/17/20 16:13	

	Calscie	nce				1									DA	TE:			91	17	12	3		
140 Lincoln Way, Garden Grove, CA 928 or courier service / sample drop off inform			finaus com c				570-3	8680	Chain						PA	GE:				OF				
ABORATORY CLIENT: Geosyntec C		szo_sales@euro				- -	-										<u> </u>	P.O.	NŌ.:				_	-
ADDRESS: 65 N. Raymond Ave, Su									Urbank		•	2693-	02A)						R2693	-02A	<u></u>			
DITY: Pasadena			STATE:	CA	9110	2			ital De										Loper		")			
TEL:	E-MAIL:				9110	J																		
626-449-0664 URNAROUND TIME (Rush surcharges may app		esai@geosynt	ec.com			<u>.</u>			-					REQ			NAL	YSE	5 					
		72 HR 🛛 🗄	5 DAYS	⊳ KSTAN	DARE)			EPA	Ê	_													
					LOG	CODE:			u (US	12320	n, and													
							<u> </u>	1	itrogei	e (SM	assiun		71A)									·	1	
								ľ	ate-ni	ponate	I, pota		B/747					.						
								ပ္ရ	e, nitr	bicart	esium)		(6010											
			,		ved	σ	red	2540	sulfat	e and	magni 010B	60B)	etals	5M)										
	SAM	PLING	MATDIX	NO.	Unpreserved	Preserved	Field Filtered	TDS (SM) 2540C	Chloride, sulfate, nitrate-nitrogen (USEPA 300)	Carbonate and bicarbonate (SM2320B)	Calcium, magnesium, potassium, and sodium (6010B)	VOCs (8260B)	Title 22 Metals (6010B/7471A)	TPH (8015M)										
USE SAMPLE ID	DATE	TIME	MATRIX	OF CONT.	_	Pre	Fiel	TDS		Cart	Calc sodi	Š	Title	Hat				<u> </u>						
	9/17/26	0829	GW	4	3	1			Ň	ĽХ	X							<u> </u>				⊢	-+	
C-1-6603		1021	GW	4	3			ГŻ	X	\times	Ņ													
C-1-CWOG		1141	GW	4	3	i		X	X	\mathbf{X}	Σ							1		L				
B-6-CWIO		1328	GW	4	3	1		X	X	\mathbf{X}	\wedge													
IDW-200917		1402	GW	3		3						X	Ha	MA .	ØY									
			GW												\leq									_
	1		GW																	-	1			
			GW												-									
	R		GW																					
	•		GW																					
Relinquished by (Signature)	15- 1	,		Rec	eived b	y: (Sigr	nature/.	Affiliati	ion)	\leq		کما	-07				Date); 7//3	7/7	7	Time:	6;	57	
Relinquished by: (Signature)		oper		Rec	eived b	y: (Sigg	fature/	Affiliati	ion)			<u></u>					Date		-120	-+	/ Time:			
																_		_						

Page 27 of 28 2.7 / 2.55 C6

10/5/2020 (Rev. 1)

Client: Geosyntec Consultants, Inc.

Login Number: 38680 List Number: 1 Creator: Ramos, Maribel

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	False	Headspace larger than 1/4".
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 570-38680-1

List Source: Eurofins Calscience

APPENDIX G Data Validation

Memorandum

Date:	22 October 2020
To:	Mital Desai
From:	Matthew Richardson
CC:	Julia Caprio
Subject:	Eurofins TestAmerica Laboratory Job IDs 320-64470-1, 320-64510-1, 320-64722-1 and 320-64765-1, Stage 2A Data Validation

Eleven solid samples, one field duplicate solid sample, five water samples, one field duplicate water sample, five equipment blanks and five field blanks were collected between 9-10 September 2020 and 16-17 September 2020 and submitted to Eurofins Lancaster Laboratories Env, LLC, Lancaster, Pennsylvania as part of the Hollywood Burbank Airport project. Eurofins Lancaster Laboratories Env, LLC analyzed the samples for the following analysis:

• Per- and Polyfluroalkyl Substances (PFAS) by United States Environmental Protection Agency (USEPA) Modified Method 537/537 IDA

The data were validated at a US EPA Stage 2A data validation level, based on the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, January 2017 (EPA 540-R-2017-002); and USEPA Contract Laboratory Program National Functional Guidelines for High Resolution Superfund Organic Methods Data Review, April 2016 (USEPA-542-B-2016-001), as well as by the pertinent methods referenced by the data package and professional and technical judgment.

1.0 320-64470-1

The following samples were validated at a Stage 2A level:

Laboratory ID	Client Sample
320-64470-1	EB-200208
320-64470-2	FB-200208
320-64470-3	SB-5A-60
320-64470-4	SB-5A-70
320-64470-5	EB-200209
320-64470-6	FB-200209
320-64470-7	SB-5A-80

Laboratory ID	Client Sample
320-64470-8	SB-5A-80-DUP
320-64470-9	SB-5A-90
320-64470-10	SB-5A-100
320-64470-11	SB-5A-110
320-64470-12	SB-5A-120
320-64470-13	SB-5A-130

The holding times for the PFAS analysis of a water and solid sample are 14 days from collection to extraction and 28 days from extraction to analysis. The holding times were met for the sample analyses.

The PFeA and PFHxA contamination reported in the equipment blank, EB-200208, did not result in qualification of the associated sample data.

The PFeA, PFHxA, PFHpA and PFOA contamination reported in the field blank, FB-200208, did not result in qualification of the associated sample data.

The laboratory data were reviewed and validated by Geosyntec's in-house data validation specialists. The in-house data validation team qualified some of the laboratory reported data based on technical and professional judgement due to one or more of the following conditions associated with the reported results:

- J the result was considered as an estimated value due to the following:
 - MS/MSD recovery(ies) or relative percent difference (RPD) was outside laboratory specified criteria; or
- UJ the results were not detected above the RL, however, the RL is considered an estimated value due to:
 - MS/MSD recovery(ies) or relative percent difference (RPD) was outside laboratory specified criteria
 - Isotope dilution analyte, 13C8 FOSA, was outside acceptance limits with low recovery in EB-200208. Therefore, the non-detect FOSA result was UJ qualified as estimated less than the RL.

Overall, the data are acceptable for use in supporting data quality objectives. Data should be used within the limitations of the applied qualifications. Elevated non-detect results were not reported.

Sample	Analyte	Laboratory Result (ng/L)	Laboratory Flag	Validation Result (ng/L)	Validation Qualifier	Reason Code
EB-200208	Perfluorooctanesulfonamide (FOSA)	1.6	U	1.6	UJ	11
SB-5A-70	4:2 FTS	2.1	F2 F1	2.1	UJ	4
SB-5A-70	6:2 FTS	2.1	F2 F1	2.1	UJ	4
SB-5A-70	8:2 FTS	3.1	F2 F1	3.1	UJ	4
SB-5A-70	N-ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA)	2.1	U F2	2.1	UJ	4
SB-5A-70	N-methylperfluorooctanesulfonamidoacetic acid (NMeFOSAA)	2.1	U F2	2.1	UJ	4
SB-5A-70	Perfluorobutanesulfonic acid (PFBS)	2.1	U F2 F1	2.1	UJ	4

Hollywood Burbank Airport Data Validation 22 October 2020 Page 3

Sample	Analyte	Laboratory Result (ng/L)	Laboratory Flag	Validation Result (ng/L)	Validation Qualifier	Reason Code
SB-5A-70	Perfluorobutanoic acid (PFBA)	2.1	U F2 F1	2.1	UJ	4
SB-5A-70	Perfluorodecanesulfonic acid (PFDS)	0.62	U F2 F1	0.62	UJ	4
SB-5A-70	Perfluorodecanoic acid (PFDA)	0.62	U F2 F1	0.62	UJ	4
SB-5A-70	Perfluorododecanoic acid (PFDoA)	0.62	U F2 F1	0.62	UJ	4
SB-5A-70	Perfluoroheptanesulfonic Acid (PFHpS)	0.62	U F2 F1	0.62	UJ	4
SB-5A-70	Perfluoroheptanoic acid (PFHpA)	1.5	F2 F1	1.5	J	4
SB-5A-70	Perfluorohexanesulfonic acid (PFHxS)	0.62	U F2 F1	0.62	UJ	4
SB-5A-70	Perfluorohexanoic acid (PFHxA)	6.3	F2 F1	6.3	J	4
SB-5A-70	Perfluorononanoic acid (PFNA)	0.62	U F2 F1	0.62	UJ	4
SB-5A-70	Perfluorooctanesulfonamide (FOSA)	0.62	U F2	0.62	UJ	4
SB-5A-70	Perfluorooctanesulfonic acid (PFOS)	0.62	U F2 F1	0.62	UJ	4
SB-5A-70	Perfluorooctanoic acid (PFOA)	0.62	U F2 F1	0.62	UJ	4
SB-5A-70	Perfluoropentanesulfonic acid (PFPeS)	3.1	U F2 F1	3.1	UJ	4
SB-5A-70	Perfluoropentanoic acid (PFPeA)	6.1	F2 F1	6.1	J	4
SB-5A-70	Perfluorotetradecanoic acid (PFTeA)	0.62	U F2 F1	0.62	UJ	4
SB-5A-70	Perfluorotridecanoic acid (PFTriA)	0.62	U F2 F1	0.62	UJ	4
SB-5A-70	Perfluoroundecanoic acid (PFUnA)	0.62	U F2 F1	0.62	UJ	4

ng/L-nanograms per liter

U-analyte was not detected at the value indicated

F1-laboratory flag indicating MS and/or MSD recovery exceeds control limits

F2-laboratory flag indicating MS/MSD RPD exceeds control limits

2.0 320-64510-1

The following samples were validated at a Stage 2A level:

Laboratory ID	Client Sample
320-64510-1	EB-200910
320-64510-2	FB-200910
320-64510-3	SB-5A-140

Laboratory ID	Client Sample
320-64510-4	SB-5A-150
320-64510-5	SB-5A-160

The holding times for the PFAS analysis of a water and solid sample are 14 days from collection to extraction and 28 days from extraction to analysis. The holding times were met for the sample analyses.

The laboratory data were reviewed and validated by Geosyntec's in-house data validation specialists. The in-house data validation team did not apply qualifications to the reported laboratory data.

Overall, the data are acceptable for use in supporting data quality objectives. Elevated nondetect results were not reported.

3.0 320-64722-1

The following samples were validated at a Stage 2A level

Laboratory ID	Client Sample
320-64722-1	A-1-CW09
320-64722-2	A-1-CW09-DUP
320-64722-3	EB-200916

Laboratory ID	Client Sample
320-64722-4	FB-200916
320-64722-5	A-1-CW03R

The relinquished time for the sample transfer was not documented on the COC.

The laboratory narrative indicated that the label for the sample container for EB-200916 did not match the COC, and one of the two sample containers did not have a sample collection time recorded.

The holding times for the PFAS analysis of a water sample are 14 days from collection to extraction and 28 days from extraction to analysis. The holding times were met for the sample analyses.

The 6:2 FTS contamination reported in the method blank did not result in qualified data.

The laboratory data were reviewed and validated by Geosyntec's in-house data validation specialists. The in-house data validation team did not apply qualifications to the reported laboratory data.

Overall, the data are acceptable for use in supporting data quality objectives. Elevated nondetect results were not reported.

4.0 320-64765-1

The following samples were validated at a Stage 2A level:

Laboratory ID	Client Sample
320-64765-1	FB-200917
320-64765-2	EB-200917
320-64765-3	C-1-CW08

Laboratory ID	Client Sample
320-64765-4	C-1-CW03
320-64765-5	C-1-CW06
320-64765-6	B-6-CW10

The relinquished time for the sample transfer was not documented on the COC.

The holding times for the PFAS analysis of a water sample are 14 days from collection to extraction and 28 days from extraction to analysis. The holding times were met for the sample analyses.

The laboratory data were reviewed and validated by Geosyntec's in-house data validation specialists. The in-house data validation team did not apply qualifications to the reported laboratory data.

Overall, the data are acceptable for use in supporting data quality objectives. Elevated nondetect results were reported due to the analyzed dilution of sample B-6-CW10. Hollywood Burbank Airport Data Validation 22 October 2020 Page 6

ATTACHMENT 1 DATA VALIDATION QUALIFIER DEFINITIONS AND INTERPRETATION KEY Assigned by Geosyntec's Data Validation Team

DATA QUALIFIER DEFINITIONS

- U The analyte was analyzed for but was not detected above the reported sample quantitation limit. Upon application of the U qualifier to a reported result, the definition changes to "not detected at or above the reported result".
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- J+ The analyte was positively identified; however, the associated numerical value is likely to be higher than the concentration of the analyte in the sample due to positive bias of associated QC or calibration data or attributable to matrix interference.
- J- The analyte was positively identified; however, the associated numerical value is likely to be lower than the concentration of the analyte in the sample due to negative bias of associated QC or calibration data or attributable to matrix interference.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

ATTACHMENT 2 DATA VALIDATION REASON CODES Assigned by Geosyntec's Data Validation Team

Valid Value	Description
1	Preservation requirement not met
2	Analysis holding time exceeded
3	Blank contamination (i.e., method, trip, equipment, etc.)
4	Matrix spike/matrix spike duplicate recovery or RPD outside limits
5	LCS recovery outside limits
6	Surrogate recovery outside limits
7	Field Duplicate RPD exceeded
8	Serial dilution percent difference exceeded
9	Calibration criteria not met
10	Linear range exceeded
11	Internal standard criteria not met
12	Lab duplicates RPD exceeded
13	Other

RPD-relative percent difference

BURBANK-GLENDALE-PASADENA AIRPORT AUTHORITY LEGAL, GOVERNMENT AND ENVIRONMENTAL AFFAIRS COMMITTEE JANUARY 19, 2021

COMMITTEE PENDING ITEMS

Future

1. Annual Noise Fine CPI Adjustment